Abstract/Details

Lysine post-translational modifications of Saccharomyces cerevisiae chromatin proteins


2012 2012

Other formats: Order a copy

Abstract (summary)

DNA exists within the cell as part of a complex structure called chromatin which is comprised of many proteins, including histones, and participates in and influences every DNA-related process. Chromatin's proteins are modified post-translationally and this impacts their functions and in turn, the DNA processes in which they participate. However, the repertoire of post-translational modifications (PTMs), the enzymes that create and remove them, and their roles in chromosome biology are not fully understood. We have used the budding yeast Saccharomyces cerevisiae to investigate chromatin PTMs, specifically lysine modifications, through three avenues: the enzymes that regulate lysine PTMs, the histone chromatin lysine PTMs, and the non-histone chromatin lysine PTMs. First, we demonstrated that the JmjC domain-containing protein Kdm5 demethylates methylated lysine 4 of histone H3 in vitro and in vivo, refuting the longstanding hypothesis that lysine methylation is irreversible. Second, we confirmed and characterized monomethylation of lysine 20 of histone H4. Its abundance is highest at heterochromatic locations including rDNA, the silent mating type loci, and subtelomeres, lowest at euchromatic locations including centromeres and promoter/5' regions of genes, and intermediate inside genes. We observed a correlation between the locations of H4 K20A-mediated derepression and H4 K20me1 enrichment. Additionally, H4 K20me1 decreases globally during replicative ageing and may participate in survival during DNA damage. Our results refute the longstanding hypothesis that this PTM is not conserved in S. cerevisiae and potentially identify the first repressive budding yeast histone lysine methylation. Third, we investigated NuA4's lysine acetylation of the chromatin protein Spt16, identified by a previously published in vitro acetyltransferase screen. Mass spectrometry identified three acetylation sites in vivo and their substitution with unacetylatable arginines, but not the acetyllysine mimics glutamine, causes moderate heat-sensitivity. Our results suggest that Spt16 acetylation occurs in vivo and is necessary for heat-tolerance.

Indexing (details)


Subject
Molecular biology;
Genetics;
Biochemistry
Classification
0307: Molecular biology
0369: Genetics
0487: Biochemistry
Identifier / keyword
Pure sciences, Biological sciences, Chromatin, Demethylation, Histone, Lysine, Methylation, Post-translational modification, Saccharomyces
Title
Lysine post-translational modifications of Saccharomyces cerevisiae chromatin proteins
Author
Edwards, Christopher R.
Number of pages
214
Publication year
2012
Degree date
2012
School code
0175
Source
DAI-B 73/09(E), Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9781267351173
Advisor
Berger, Shelley L.
Committee member
Blobel, Gerd A.; Johnson, F. B.; Lazar, Mitch; Marmorstein, Ronen; Wagner, Doris
University/institution
University of Pennsylvania
Department
Cell and Molecular Biology
University location
United States -- Pennsylvania
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3508996
ProQuest document ID
1018735271
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/1018735271
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.