It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Imbalanced data classification problem has always been one of the hot issues in the field of machine learning. Synthetic minority over-sampling technique (SMOTE) is a classical approach to balance datasets, but it may give rise to such problem as noise. Stacked De-noising Auto-Encoder neural network (SDAE), can effectively reduce data redundancy and noise through unsupervised layer-wise greedy learning. Aiming at the shortcomings of SMOTE algorithm when synthesizing new minority class samples, the paper proposed a Stacked De-noising Auto-Encoder neural network algorithm based on SMOTE, SMOTE-SDAE, which is aimed to deal with imbalanced data classification. The proposed algorithm is not only able to synthesize new minority class samples, but it also can de-noise and classify the sampled data. Experimental results show that compared with traditional algorithms, SMOTE-SDAE significantly improves the minority class classification accuracy of the imbalanced datasets.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer