Full Text

Turn on search term navigation

© 2018 Durandetto, Sosso. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents an open-source package developed in Python that controls and drives a programmable Josephson array to synthesize dc and ac quantum-accurate voltages. Programmable arrays are devices subdivided into independent subsections, each counting a number of series connected Josephson junctions that follows a binary sequence (1, 2, 4, 8, …) to control the output voltage. Our software allows to independently measure the current-voltage characteristics of each subsection by means of a set of arbitrary waveform generators and a nanovoltmeter that measures the voltage across the whole array with high sensitivity. A quantization test tool is also provided to check with sub-microvolt resolution whether the array is operating on its quantum margins. The code is modular and easily expandable with the support of many libraries, allowing prompt reconfiguration for different calibration and testing purposes. It is aimed at being a starting point for cooperation between National Metrology Institutes towards the realization of a shared quantum voltage calibration infrastructure.

Details

Title
A modular and customizable open-source package for quantum voltage standards operation and control
Author
Durandetto, Paolo; ⨯ Andrea Sosso
First page
e0209246
Section
Research Article
Publication year
2018
Publication date
Dec 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2157874934
Copyright
© 2018 Durandetto, Sosso. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.