Abstract

The scenario of the independent chemical freeze-outs for strange and nonstrange particles is discussed. Within such a scenario an apparent in-equilibrium of strangeness is naturally explained by a separation of chemical freeze-out of strange hadrons from the one of non-strange hadrons, which, nevertheless, are connected by the conservation laws of entropy, baryonic charge and third isospin projection. An interplay between the separate freeze-out of strangeness and its residual non-equilibrium is studied within an elaborate version of the hadron resonance gas model. The developed model enables us to perform a high-quality fit of the hadron multiplicity ratios measured at AGS, SPS and RHIC with an overall fit quality ϰ2/dof = 0:93. A special attention is paid to a description of the Strangeness Horn and to the well-known problem of selective suppression of Δ- and ж hyperons. It is remarkable that for all collision energies the strangeness suppression factor γs is about 1 within the error bars. The only exception is found in the vicinity of the center-of-mass collision energy 7.6 GeV, at which a residual enhancement of strangeness of about 20 % is observed.

Details

Title
Separate freeze-out of strange particles and the quark-hadron phase transition
Author
Bugaev, K; Sagun, V; Ivanytskyi, A; Nikonov, E; Cleymans, J; Mishustin, I; Zinovjev, G; LV Bravina; Zabrodin, EE
Section
Talks
Publication year
2018
Publication date
2018
Publisher
EDP Sciences
ISSN
21016275
e-ISSN
2100014X
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2285086306
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.