Abstract/Details

Biosynthetic introduction of aryl bromide functionality into proteins


2001 2001

Other formats: Order a copy

Abstract (summary)

Incorporation of aryl bromide functionality into proteins was achieved via engineering the bacterial biosynthetic apparatus. A phenylalanine auxotrophic E. coli host was equipped with a phenylalanyl-tRNA synthetase (PheRS) variant that has a broadened substrate specificity. The mutant pheS gene (pheS*), which codes for the α-subunit of the enzyme PheRS and confers relaxed substrate specificity, was encoded on a multiple-copy plasmid that also bears the target gene dihydrofolate reductase (DHFR). Constitutive over-expression of pheS* and subsequent expression of the target gene in the presence of phenylatanine analog, para-bromophenylalanine (p-Br-phe), allowed over 85% replacements of phe residues by p-Br-phe in DHFR. The level of bromination can be controlled by varying the relative amounts of phe and p-Br-phe in the culture medium. Introduction of aryl bromide functionality into proteins offers great potential for selective chemical modification of proteins via transition metal-catalyzed reactions, which are orthogonal to existing protein chemistry. Moreover, bromination may be useful in X-ray studies of proteins via the multiwavelength anomalous diffraction (MAD) technique.

The utility of the aryl bromide as a unique functionality was investigated in collaboration with Isaac Carrico. Artificial extracellular matrix (ECM) proteins were synthesized using the principles of recombinant DNA technology. These proteins were designed for eventual application in vascular grafts. The engineered ECM proteins contained alternating blocks of cell-binding domains derived from CS1or CS5 regions of human fibronectin for endothelial cell attachment, and elastin-like repeats for mechanical integrity. One phe residue per elastin block [(VPGVG)2VPGFG(VPGVG)2] was designed, which could be replaced with p-Br-phe and subsequently used for chemical cross-linking of the proteins. Protein expression yields of 75–90 mg/L were obtained with 50–60% substitution of phe by p-Br-phe. Preliminary exploration of Pd(0)-catalyzed Heck and Sonagashira couplings with p-Br-phe demonstrate feasibility of these reactions under mild conditions required for protein modification as well as compatibility with side chains of all natural amino acids (except cysteine).

Site-specific incorporation of p-Br-phe was tested in an E. coli strain equipped with a yeast PheRS/tRNA Phe amber supressor pair. While p-F-phe can be site-specifically incorporated using this system, attempts at p-Br-phe incorporation were unsuccessful, probably due to unfavorable interaction of p-Br-phe with the bulky and polar tyrosine residue in the binding pocket of yeast PheRS.

Indexing (details)


Subject
Molecular biology;
Biochemistry
Classification
0307: Molecular biology
0487: Biochemistry
Identifier / keyword
Pure sciences; Biological sciences; Aryl bromide; Biosynthetic; Bromination; PheRS
Title
Biosynthetic introduction of aryl bromide functionality into proteins
Author
Sharma, Nandita
Number of pages
97
Publication year
2001
Degree date
2001
School code
0118
Source
DAI-B 62/01, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
0493084258, 9780493084251
Advisor
Tirrell, David A.
University/institution
University of Massachusetts Amherst
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3000345
ProQuest document ID
230539197
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/230539197
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.