Effect of head orientation on dynamic postural stability and torso coordination

2010 2010

Other formats: Order a copy

Abstract (summary)

Purpose. Sensory feedback from the vestibular system and neck muscle stretch receptors is critical for the regulation of posture. The relationship of the head to the trunk is a major factor determining the availability and integration of sensory feedback and can be interfered with by varying head orientation. The goal of this research was to assess (1) how adopting different head-on-trunk orientations would impact postural stability, particularly in relation to the stability boundary, during static balance tasks and (2) how adopting different head-on-trunk and head-in-space orientations would impact postural stability, movement characteristics, and multi-segmental torso coordination during a dynamic postural transition task in healthy, young participants.

Methods. Healthy, young participants were asked to maintain 30 seconds of upright stance and forward lean or to move from sitting to standing with extended, flexed, and neutral head orientations. Dual force plates were used to assess postural stability from center of pressure variability, range, velocity, or time-to-contact. Six motion capture cameras were used to assess kinematics. During the sit-to-stand task, head velocities, trunk flexion, and movement phase durations were calculated. Segment cross-correlation and joint range of motion were calculated for six torso segments.

Results. Extended head-on-trunk orientations decreased postural stability during upright stance, forward lean, and the sit-to-stand movement compared to flexed or neutral orientations. During the sit-to-stand task, head-on-trunk extension, with or without head-in-space extension, led to reduced head velocities, trunk flexion, movement duration, and transition phase duration. Head extension led to increased inter-segmental torso motion, and decreased temporal coordination of torso segments.

Conclusions. This study demonstrated that interfering with head-trunk posture by adopting head extended orientations impairs balance and leads to sit-to-stand strategy changes that may interfere with movement and coordination. Results show that head-on-trunk extension is more critical than head-in-space extension for determining postural and movement changes. The findings suggest that vestibular system interference may not be the main route through which head extension impacts postural control, but that extensor muscle stretch receptors may be a factor in the posture and movement changes associated with head-on-trunk extension. It is possible tonic neck muscle activity is a critical factor for regulating balance and movement.

Indexing (details)

Behavioral psychology;
Health sciences
0317: Neurosciences
0384: Behavioral psychology
0566: Health sciences
Identifier / keyword
Health and environmental sciences; Psychology; Biological sciences; Coordination; Head; Motor control; Posture; Sit-to-stand; Torso
Effect of head orientation on dynamic postural stability and torso coordination
Johnson, Molly
Number of pages
Publication year
Degree date
School code
DAI-B 71/04, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Emmerik, Richard E.A. Van
Committee member
Berthier, Neil; Caldwell, Graham; Hamill, Joseph
University of Massachusetts Amherst
Neuroscience & Behavior
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.