Abstract/Details

THE EXPERIMENTAL PARTITIONING BEHAVIOR OF TUNGSTEN AND PHOSPHORUS: IMPLICATIONS FOR THE COMPOSITION AND FORMATION OF THE EARTH, MOON AND EUCRITE PARENT BODY


1982 1982

Other formats: Order a copy

Abstract (summary)

The solid-metal/silicate-melt partition coefficient for W has been determined experimentally for the temperature and oxygen fugacity conditions at which eucritic basalts formed. The partition coefficient for W is 25 (+OR-) 5 at 1190(DEGREES)C and an oxygen fugacity of 10('-13.4). The solid-metal/silicate-melt partition coefficient for P, D(P), has been determined experimentally at 1190(DEGREES)C and 1300(DEGREES)C. The dependence of the partition coefficient on oxygen fugacity is consistent with a valence state of 5 for P in the silicate melt. The experimental partition coefficients are given by:

log D(P) = -1.21 log fO(,2) -15.95 at 1190(DEGREES)C

log D(P) = -1.53 log fO(,2) -17.73 at 1300(DEGREES)C

The partition coefficients may be used to interpret the depletion of W/La and P/La ratios in the Earth, Moon, and eucrites relative to Cl chondrites. The depletion of the W/La ratios in the eucrites may be explained by partitioning of W into 2% to 10% solid metal assuming equilibration and separation of the metal from the silicates at low degrees of partial melting of the silicates. The depletion of P/La ratios requires an additional 5% to 25% sulfur-bearing metallic liquid. The depletion of both P/La and W/La ratios in the Moon can be explained by partitioning of P and W into liquid metal during formation of a small lunar core by metal-silicate separation at low degrees of partial melting of the silicates. The W/La ratios in the Earth and Moon are virtually indistinguishable, while P/La ratios differ by a factor of two. The concentrations of FeO also appear to be different. These observations are difficult to reconcile with the hypothesis of a terrestrial origin of the Moon following formation of the Earth's core, but are consistent with an independent formation of the Earth and Moon. In contrast to the Moon and eucrites, the depletion of P/La and W/La ratios in the Earth cannot be explained by an internally consistent model involving equilibrium between metal and silicate at low pressures.

Indexing (details)


Subject
Geochemistry
Classification
0996: Geochemistry
Identifier / keyword
Earth sciences
Title
THE EXPERIMENTAL PARTITIONING BEHAVIOR OF TUNGSTEN AND PHOSPHORUS: IMPLICATIONS FOR THE COMPOSITION AND FORMATION OF THE EARTH, MOON AND EUCRITE PARENT BODY
Author
NEWSOM, HORTON ELWOOD
Number of pages
84
Publication year
1982
Degree date
1982
School code
0009
Source
DAI-B 43/07, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
University/institution
The University of Arizona
University location
United States -- Arizona
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
8227363
ProQuest document ID
303215184
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/303215184
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.