Abstract/Details

Embedding Riemann surfaces in Riemannian manifolds


1989 1989

Other formats: Order a copy

Abstract (summary)

Every smooth compact orientable surface in a Riemannian manifold is naturally a Riemann surface. We may use the extrinsic metric, that is the metric induced by the surrounding Riemannian manifold, to introduce a conformal structure. As Gauss understood, and proved existence in the case of real analytic surfaces in $\IR\sp3$, the passage from the Riemannian structure on a surface to a Riemann surface structure is precisely the introduction of isothermal coordinates.

Around 1960, A. Garsia proved that every compact Riemann surface can be conformally immersed in $\IR\sp3$. In 1970, R. Ruedy extended Garsia's result to open Riemann surfaces and later he proved that every compact Riemann surface can be conformally embedded in $\IR\sp3$.

We may ask whether we can get a conformally equivalent model in a Riemannian manifold for any given compact Riemann surface. To give the answer we will study the deformation of surfaces embedded in an orientable Riemannian manifold.

Our main result here is the extension of the Garsia-Ruedy theorem to compact Riemann surfaces in orientable Riemannian manifolds.

This study was inspired by recent developments in mathematics and particle physics. Embedded Riemann surfaces occur in string theory--the so called theory of everything--as the world sheets, that is the trajectories, of strings moving in space-time. The strings are permitted to join and separate. In general, these surfaces are non-compact and have positive genus.

We prove the following two theorems in this dissertation. Theorem 1. Assume that S is a compact ${\cal C}\sp\infty$-embedded Riemann surface in the orientable Riemannian manifold M of dim M $\geq$ 3. Let S$\sb0$ be any Riemann surface structure on S. If there exists a nowhere vanishing smooth section of the normal bundle NS of S in M, then there exists an $\epsilon$ = $\epsilon$(S) so that there is an embedded $\epsilon$-normal deformation of S. And there exists an $\epsilon$-normal deformation of S which is conformally equivalent to the given Riemann surface S$\sb0$. Theorem 2. The map of the space of embedded surfaces into the Teichmuller space is continuous in the ${\cal C}\sp1$-topology. This map is not continuous in the ${\cal C}\sp0$-topology.

Indexing (details)


Subject
Mathematics
Classification
0405: Mathematics
Identifier / keyword
Pure sciences
Title
Embedding Riemann surfaces in Riemannian manifolds
Author
Ko, Seok-ku
Number of pages
85
Publication year
1989
Degree date
1989
School code
0056
Source
DAI-B 50/11, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
University/institution
University of Connecticut
University location
United States -- Connecticut
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
9008789
ProQuest document ID
303752959
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/303752959/abstract
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.