Mobility of poly(amidoamine) dendrimers; a study of NMR relaxation times

1990 1990

Other formats: Order a copy

Abstract (summary)

The steric nature of the new topology created by the starburst polymer has been studied by $\sp{13}$C and $\sp2$H dynamic nuclear magnetic resonance (NMR) relaxation measurements. For two series of poly(amidoamines), PAMAM, (one OH terminated, the other NH$\sb2$ terminated), $\sp{13}$C correlation times ($\tau$) of the terminal carbons were found to be almost independent of the number of end groups; $\tau$ varied from 1.0 $\times$ 10$\sp{-11}$ to 6.3 $\times$ 10$\sp{-11}$, and no evidence of dense-packing of the end groups was observed. The $\tau$'s of the methylene carbons on the interior of the dendrimers were found to increase with molecular weight, indicative of a progressive increase in local monomer density within the polymer.

No significant differences in relaxation parameters of the internal carbons were observed for the NH$\sb2$ terminated PAMAM compared to the OH terminated analogues, in either D$\sb2$O or DMSO-d$\sb6$. Thus, the results reflect topological effects, and are not due to specific solvent or end group behavior. Larger relaxation times were observed for both series when measured in D$\sb2$O. While the differences in polymer behavior in the two solvents indicate that the polymer chains are more flexible in D$\sb2$O than in DMSO-d$\sb6$, intrinsic viscosities were determined to be comparable in the two solvents (0.04-0.10 dl/g). The difference in the NMR behavior is thus attributed to strong H-bonding between the polymer and DMSO, resulting in an increase in the hydrodynamic volume of the mobile unit. The relaxation behavior of the terminal carbon, in D$\sb2$O, differed upon changing the end group. The terminal carbon of the OH terminated PAMAM was observed to be less mobile than the corresponding carbon atom in the NH$\sb2$ terminated PAMAM.

$\sp2$H NMR relaxation measurements were used in a more extensive study of the mobility of amine terminated PAMAM chains as a function of molecular weight and positions. The $\tau$'s were found to increase with molecular weight, irrespective of the location of the labelling. In the last generation the $\tau$'s were found to increase as the number of termini increases from 3($\tau$ = 1.7 $\times$ 10$\sp{-12}$s) to 384 ($\tau$ = 2.2 $\times$ 10$\sp{-11}$s), and were smaller than the $\tau$'s observed when the polymers were labelled at interior positions. No significant difference in relaxation parameters was observed when the label was located in the interior repeat units, irrespective of chain length following deuteration. No evidence of radial gradients was observed.

Indexing (details)

Organic chemistry
0495: Polymers
0494: Chemistry
0490: Organic chemistry
Identifier / keyword
Pure sciences
Mobility of poly(amidoamine) dendrimers; a study of NMR relaxation times
Meltzer, A. Donald
Number of pages
Publication year
Degree date
School code
DAI-B 51/03, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Tirrell, David A.
University of Massachusetts Amherst
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.