Abstract/Details

Characterization of thePITALRE/CDK9 and PISSLREcdc2-related kinases


1998 1998

Other formats: Order a copy

Abstract (summary)

The proteins involved in determining when and how fast a eukaryotic cell can progress towards cell division have been an intensive topic of study for the last two decades. A subset of these proteins controlling the cell cycle are kinases that phosphorylate critical substrates during progression or arrest of the cell cycle. The Saccharomyces cerevisiae cdc28 protein was found to be a kinase that regulated both the onset of DNA replication and mitosis in this yeast. Mammalian cells possess a homolog of cdc28, termed cdc2, that also allows entry into mitosis. However, mammalian systems have evolved a much more complex system of cell cycle regulation in that several similar yet distinct kinases are present at different points of the cell cycle to ensure efficient control. Two relatives of cdc2, PITALRE and PISSLRE, have been cloned in our lab that are named with respect to their homology to cdc2 in the PSTAIRE amino acid domain. This dissertation provides evidence assigning these two kinases to functions both within and outside of cell cycle control. By using a kinase-inactive mutant strategy, PISSLRE is shown here to be essential for normal cellular growth and localized temporally to the early G2 phase of the cell cycle. The PISSLRE protein is nuclear, 35kDa and associates with three intracellular proteins. Although these functions are similar to mammalian cdc2 characteristics, PISSLRE is not able to complement the loss of the S. cerevisiae cdc2 homolog, cdc28. These data suggest that PISSLRE acts similarly to cdc2 in human cells, however the pathways through which it functions are not the same as cdc2 or at least not conserved in yeast. PITALRE, on the other hand, appears to be an atypical cdc2 relative. Expression of PITALRE in the developing mouse is localized to areas that have terminally differentiated and PITALRE kinase activity increases dramatically during in vitro differentiation of certain cell types. Another cdc2 relative, CDKS, has been found to possess much of the same qualities. PITALRE also associates with the TNF signalling protein TRAF2. Interaction occurs in an area of TRAF2 that is required for binding to other kinases and for efficient activation of the NF-$\kappa$B transcription factor. Binding between the two proteins in vivo takes place in terminally differentiated muscle cells, wherein PITALRE partially translocates to the cytoplasm. TRAF2 is highly upregulated during muscle differentiation in vitro and is expressed in areas of skeletal muscle in the developing mouse. A kinase inactive mutant of PITALRE blocks TNF- and TRAF2-mediated NF-$\kappa$B activation and is potentiated only by a mutant of kinase active PITALRE that lacks a nuclear localization sequence. Therefore, I propose here that PITALRE possesses both nuclear and cytoplasmic functions upon onset of differentiation, and that these are not necessarily cooperative.

Indexing (details)


Subject
Cellular biology;
Molecular biology;
Genetics;
Biochemistry
Classification
0379: Cellular biology
0307: Molecular biology
0369: Genetics
0487: Biochemistry
Identifier / keyword
Pure sciences, Biological sciences, Kinases, PISSLRE, PITALRE/CDK9, cdc2-related
Title
Characterization of thePITALRE/CDK9 and PISSLREcdc2-related kinases
Author
MacLachlan, Timothy Kenneth
Number of pages
157
Publication year
1998
Degree date
1998
School code
0272
Source
DAI-B 59/07, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9780591938807, 0591938804
Advisor
Giordano, Antonio; Croce, Carlo
University/institution
Thomas Jefferson University
University location
United States -- Pennsylvania
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
9839996
ProQuest document ID
304461161
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304461161
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.