Cellular responses of Staphylococcus aureus as related to NMR detected water and system mobility, water activity and media formulation

1999 1999

Other formats: Order a copy

Abstract (summary)

The effect of water on growth and survival of Staphylococcus aureus was investigated using liquid (17O) and solid-state (1H) Nuclear Magnetic Resonance (NMR) spectroscopy. Different growth media, solute types, and methods of water activity (aw) adjustment (i.e. moisture versus solute variations) were studied.

For the growth studies (>0.75 aw), mostly all water present was detected by the NMR and was highly mobile. Dependence of S. aureus growth was only partly dependent on the NMR signal intensity (amount of mobile or detected water) and partly dependent on the solute types.

When aw was adjusted by changing moisture content, the use of brain heart infusion (BHI) or chicken meat media (CMM) did not affect the general conclusion. However, CMM resulted in an increased viscosity particularly at lower moisture content and partly influenced the NMR water mobility results. In general, it is postulated from this work that there is a critical amount of mobile water (based on 17O NMR intensity) of ∼40 g water detected/100 g sample below which S. aureus is significantly inhibited.

For the survival study (<0.75 aw), the mobile proton signal was primarily due to the amount of water protons. Upon hydration, the onset NMR mobility increase also correlated with the monolayer value of water. A substantial increase in proton mobility (T2) was observed upon further increase in moisture content. Survival of S. aureus in a freeze-dried gum mixture was dependent on proton mobility, amount of mobile protons, and aw. Added mannitol and raffinose both protected the cells from osmotic-related death. The critical aw's at which cell death dramatically increased were in a similar aw range when proton mobility also increased. This suggested that molecular mobility facilitated the cell damage brought about by osmotic stress and in this case may serve as an indicator of water availability. Thus, molecular mobility plays a critical role in controlling cell survivability at a low moisture condition.

Indexing (details)

Food science;
0359: Food science
0410: Microbiology
Identifier / keyword
Biological sciences; Cellular responses; Growth media; NMR; Staphylococcus aureus; Water
Cellular responses of Staphylococcus aureus as related to NMR detected water and system mobility, water activity and media formulation
Lavoie, James Peter
Number of pages
Publication year
Degree date
School code
DAI-B 60/11, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
0599530340, 9780599530348
Chinachoti, Pavinee
University of Massachusetts Amherst
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.