Abstract/Details

An analysis of the amorphous phase in polymers


2008 2008

Other formats: Order a copy

Abstract (summary)

An accurate and quantitative description of the amorphous phase is necessary to understand a correlation of structure with properties for polymeric materials, especially as these evolve with time. Due to the lack of long-range order, the analysis of the amorphous phase in polymers has been difficult and has yielded only limited information. Flory's rotational isomeric states (RIS) model provides a useful characterization of the short-range order for chains in the amorphous phase, and provides semi-quantitative information for an entire amorphous chain. In this research, experimental spectroscopic methods are combined with simulation of spectra based on superposition of normal coordinate analysis of RIS generated chains as applied to Poly(lactic acid) (PLA) and Poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)]. Due to the unusually high strain-induced crystallization in PLA, it is of great importance to understand the structural changes that accompany deformation. The change in conformational distribution induced by deformation of PLA is estimated based on comparison of changes in the observed Raman spectra with those in the calculated. Analysis of the amorphous phase of PVDF homopolymer and P(VDF-HFP) copolymer is motivated by the increasing use of these polymers in biomedical devices. Spectroscopic features that characterize the conformational structure were established by comparing experimental and simulated Raman spectra of these materials. Different RIS models were investigated and compared with the experimental spectra, leading to an assessment of the distribution of conformation in the amorphous phase.

The dynamic behavior of the amorphous phase under external excitation is also of great interest, as this behavior is closely related to the physical properties of the polymer. In this research, the dynamics of amorphous chains were investigated through the response to microwave frequency excitation. Eleven different polymeric systems were studied as a function of temperature by microwave frequency dielectric spectroscopy. Relaxation processes were observed in polymer with low glass transition temperatures (Tg) and characterized on the basis of the temperature dependence of the relaxation. These relaxation processes all followed an Arrhenius temperature dependence. The activation energy was determined and compared to Tg, which strongly suggested that relaxation was by the Johari-Goldstein β process.

Indexing (details)


Subject
Molecular physics
Classification
0609: Molecular physics
Identifier / keyword
Pure sciences, Amorphous phase, Amorphous polymers, Polylactic acid, Rotational isomeric states
Title
An analysis of the amorphous phase in polymers
Author
Yang, Yuning
Number of pages
158
Publication year
2008
Degree date
2008
School code
0118
Source
DAI-B 69/07, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9780549664161
Advisor
Hsu, Shaw Ling
Committee member
Dinsmore, Anthony; Emrick, Todd; Menon, Narayanan; Stidham, Howard
University/institution
University of Massachusetts Amherst
Department
Physics
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3315536
ProQuest document ID
304566493
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304566493
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.