Abstract/Details

Simulations of polymer crystallization and amyloid fibrillization


2008 2008

Other formats: Order a copy

Abstract (summary)

This dissertation describes computer simulations and theoretical analyses of polymer crystallization and amyloid fibrillization. Langevin Dynamics simulations of polymer chains in dilute solutions suggest that chains are prefolded before crystallization, in contradiction with the traditional view that chain folding occurs only on the growth front. The prefolded chain reveals a thickness plateau in low-temperature region (solving the puzzle of "δL catastrophe"), suggesting that lamellar thickness might be a predetermined equilibrium result. Based on the above prefolding and predetermined thickness concepts, the prefolded chains are then taken as the smallest dynamic units in Monte Carlo simulations, where an anisotropic aggregation model is proposed to study single crystals, shish-kebab crystals, and crystal melting. This model is further extended to amyloid fibrillization.

The single crystal study shows a rough-flat-rough habit transition, solving a long-standing puzzle for the existing theories. The lamellar growth rate is confirmed to vary exponentially with temperature and concentration. The shish-kebab study confirms that the distribution of kebab spacings is lognormal. In contrast to Pennings' and Hill's models, a new model is proposed to describe the relation between the spacing and temperature: the logarithm of the spacing growth rate is proportional to the inverse of temperature. The spacing is also found to be proportional to the inverse of polymer concentration. A broad melting transition for shish-kebab crystals is observed in simulations. The melting point is confirmed to be proportional to the square root of heating rate, increase exponentially with crystallization temperature, and increase with the logarithm of crystallization time in sigmoidal fashion. It is proposed that the melting point is related to the lamellar diameter, rather than the lamellar thickness in the traditional view. The seeding phenomenon for amyloid fibrils is reproduced in simulations. It is proposed that nucleation of the amyloid fibril is due to its semi-two-dimensional nature, because a pure one-dimensional growth does not require nucleation and does not exhibit sigmoidal curves. The importance of the second layer of β-sheet is stressed. It is proposed that Ostwald ripening (bigger fibrils grow at the expense of smaller ones) is the dominating mechanism for amyloid fibril growth.

Indexing (details)


Subject
Polymer chemistry
Classification
0495: Polymer chemistry
Identifier / keyword
Pure sciences; Amyloid fibrillization; Amyloid fibrils; Melting temperature; Nucleation; Ostwald ripening; Polymer crystallization; Seeding
Title
Simulations of polymer crystallization and amyloid fibrillization
Author
Zhang, Jianing
Number of pages
148
Publication year
2008
Degree date
2008
School code
0118
Source
DAI-B 69/12, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9780549915478
Advisor
Muthukumar, Murugappan
Committee member
Auerbach, Scott M.; Machta, Jonathan
University/institution
University of Massachusetts Amherst
Department
Polymer Science & Engineering
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3336961
ProQuest document ID
304567121
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304567121
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.