Fabrication of nanomaterials using porous templates

2008 2008

Other formats: Order a copy

Abstract (summary)

Fabrication and characterization of different nanomaterials by using porous anodic aluminum oxide (AAO) templates were studied. Amorphous carbon nanotubes were prepared by casting thin films of polyacrylonitrile (PAN) and polystyrene-block-polyacrylonitrile (PS-b-PAN) within a AAO membrane followed by pyrolysis. Raman and wide angle X-ray diffraction (WAXD) measurements indicate that the carbon nanotubes are of low crystallinity. When diblock copolymers of PS-b-PAN were used, it was found that, nanopores were created within the nanotube walls after pyrolysis.

Nanotubes of the cylinder-forming polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymer nanotubes were generated. Because of the water solubility of the cylindrical PEO microdomains and the orientation of the cylindrical PEO microdomains with respect to the nanotube walls, the nanotubes were permeable to aqueous media.

Rayleigh instabilities in thin polymer films confined within AAO membranes were studied. Thin films of PMMA were prepared by filling cylindrical nanopores in an AAO membrane with a PMMA solution in chloroform followed by solvent evaporation. When the PMMA nanotubes were annealed above the glass transition temperature (Tg), undulations in the film thickness were observed that were induced by a Rayleigh instability. The amplitude of the undulations increased with time and eventually bridged across the cylindrical nanopore in the AAO membrane, resulting in the formation of polymer nanorods with periodically encapsulated holes.

A facile route to prepare hierarchical structures by wetting polymer microspheres into the nanopores of AAO templates was presented. In this approach, polystyrene (PS) microspheres were first spread and self-assembled into well-ordered monolayers on a silicon wafer. By contacting the porous AAO template, polymer chains wet the porous template and form short nanorods on top of the micrsopheres after thermal annealing. These hierarchical structures show ordering at two length scales which can be controlled by the size of the polystyrene microspheres and the pore sizes of the template.

The generation of one-dimensional mesoporous silica and titania nanomaterials by using poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) as precursors was described. The porous structures were fabricated by evaporation induced self-assembly followed by pyrolysis. The orientation of the mesopores is parallel to the channels of the AAO membrane.

Indexing (details)

Polymer chemistry
0495: Polymer chemistry
Identifier / keyword
Pure sciences; Anodic aluminum oxide; Nanomaterials; Polyacrylonitrile; Porous templates
Fabrication of nanomaterials using porous templates
Chen, Jiun-Tai
Number of pages
Publication year
Degree date
School code
DAI-B 69/12, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Russell, Thomas P.
Committee member
McCarthy, Thomas J.; Venkataraman, Dhandapani
University of Massachusetts Amherst
Polymer Science & Engineering
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.