Abstract/Details

Emission line diagnostics of magnetospheric accretion in young stellar objects


2000 2000

Other formats: Order a copy

Abstract (summary)

This thesis seeks to explain the nature of line emission observed in young stellar objects, and to use the lines as diagnostics of the accretion process that is central to star formation. We maintain that the bulk of permitted line emission is produced in free-falling gas streams formed via magnetically-mediated accretion from circumstellar disks. Radiative transfer models of magnetospheric accretion have been calculated, and predicted line profiles exhibit characteristic central peaks, blueward asymmetries, and occasional redshifted absorption components. Model Balmer line fluxes are in good agreement with T Tauri star observations. We present line profile observations of T Tauri stars spanning a range of accretion activity, and show that many optical atomic lines, such as Na I, O I, and Ca II, are qualitatively similar to the models. We find that several emission lines, such as the Ca II infrared triplet and Brγ, are well-correlated in luminosity with the accretion luminosity in T Tauri stars, and hence can be used as alternate calibrators of the accretion rate. We use the Brγ calibrator to determine accretion luminosities in optically invisible embedded protostars for the first time. The results show that protostellar accretion luminosities are only ∼10% of their bolometric luminosities, which indicates that accretion rates are on average only a factor of ten larger than in the older, optically visible T Tauri stars. We present more detailed models treating additional effects such as line damping and rotation, and show specific comparisons to well-studied T Tauri stars. Damping wings can account for the significant high-velocity emission at Hα, and produce larger Balmer decrements in better agreement with observations. Line profiles are not significantly affected by rotation at typical T Tauri rates. Using an extensive grid of models and detailed comparisons to observations, we are able to tightly constrain gas temperatures, and to some extent the magnetospheric geometry. In order to explain the empirical correlations between emission line strength and accretion luminosity, the size of the emitting region must be correlated with the accretion rate. Finally, we present models of Hα profiles and the UV/optical spectral energy distributions for two 10 Myr-old T Tauri stars in the TW Hya association. We find that the accretion rates for these stars are over one order of magnitude smaller than the mean rate for the 1 Myr T Tauri stars, indicating significant disk evolution over this time period.

Indexing (details)


Subject
Astronomy;
Astrophysics
Classification
0606: Astronomy
0606: Astrophysics
Identifier / keyword
Pure sciences; Accretion; Emission line diagnostics; Magnetospheric; Radiative transfer; Star formation; Stellar
Title
Emission line diagnostics of magnetospheric accretion in young stellar objects
Author
Muzerolle, James C.
Number of pages
168
Publication year
2000
Degree date
2000
School code
0118
Source
DAI-B 61/10, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
059996328X, 9780599963283
Advisor
Edwards, Suzan
University/institution
University of Massachusetts Amherst
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
9988826
ProQuest document ID
304606934
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304606934
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.