Abstract/Details

The disorder -to -order phase transition in poly(styrene-<i>block</i>-n-butyl methacrylate): The effect of pressure


2001 2001

Other formats: Order a copy

Abstract (summary)

The effect of hydrostatic pressure on the lower disorder-to-order transition (LDOT) in poly(d-styrene-block-n-butyl methacrylate) having symmetric and asymmetric block lengths was investigated by in situ small-angle neutron scattering (SANS). Currently, linear diblock copolymers having styrenic and methacrylic monomers are the only systems that display a thermally accessible phase transition from the disordered homogeneous melt to the ordered microphase-separated state upon heating. The location of this phase transition was mapped as a function of temperature and pressure by analyzing one dimensional SANS intensities, where discontinuities in the width and height of the scattering peak indicated the traversal of the transition isothermally or isobarically.

The T-P phase diagram of p(d-S-b-nBMA) built using this method shows an expansion of the disordered, homogenous region with increasing pressure. For the diblock copolymer with a lamellar morphology and Mw = 8.5 × 104, the slope of the phase transition line was ∼150 K/kbar, and was approximately linear over a range of 1 kbar. Increasing the molecular weight of p(d-S- b-nBMA) resulted in a vertical shift of the phase transition line in the phase diagram and no detectable change in slope. Similar effects were observed for diblock copolymers with a cylindrical morphology. The bulk enthalpy and volume changes at the phase transition, which dictate the pressure coefficient for a one component system, were either at the limit of experimental resolution or unobservable due to kinetic factors. In-situ X-ray reflectivity experiments, however, showed a significantly reduced thermal expansion coefficient in the disordered phase and a discontinuous increase in film thickness as a function of temperature at the bulk LDOT.

The pressure coefficient, dTLDOT/dP, for these materials is greater by a factor of five than currently observed in diblock copolymers with conventional UODT phase behavior, i.e. ordering upon cooling . This dramatic phase behavior allows rapid and convenient access to the order-disorder phase transition, isothermally, and suggests that LDOT block copolymers could be employed in blend and multi-component systems as minor components to impart pressure-induced compatibilization, surface activity, or flow properties.

Indexing (details)


Subject
Polymers;
Condensation
Classification
0495: Polymers
0611: Condensation
Identifier / keyword
Pure sciences; Block copolymers; Disorder-to-order; Phase transition; Pressure
Title
The disorder -to -order phase transition in poly(styrene-<i>block</i>-n-butyl methacrylate): The effect of pressure
Author
Pollard, Michael Anthony
Number of pages
81
Publication year
2001
Degree date
2001
School code
0118
Source
DAI-B 62/10, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
0493392998, 9780493392998
Advisor
Russell, Thomas P.
University/institution
University of Massachusetts Amherst
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3027242
ProQuest document ID
304701728
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304701728
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.