Nuclear magnetic resonance studies of local magnetic, electronic, and dynamic properties in filled single wall carbon nanotubes

2007 2007

Other formats: Order a copy

Abstract (summary)

In this dissertation, the local magnetic and electronic properties of SWNTs are investigated. Also, one dimensional (1-D) dynamics of C60 fullerenes encapsulated in SWNTs is investigated using Nuclear Magnetic Resonance (NMR) spectroscopy. In order to remove ferromagnetic catalyst particles present in SWNT samples, which interfere with NMR measurements, we have developed a novel magnetic purification method by which 99% of the ferromagnetic particles are removed. With this new method, we could obtain a well-resolved NMR signal with FWHM of ∼20 ppm from natural carbon based SWNTs. Using 25% 13C enriched C60 encapsulated in the magnetically purified SWNTs as an NMR probe, the local magnetic properties of the 1-D inner space of SWNTs are studied. Surprisingly, SWNTs are found to screen the applied magnetic field by tens of ppm. More interestingly, the diamagnetic shielding is found to be tunable by controlling defects or doping. While defects create paramagnetic currents to destroy the diamagnetic shielding, doping enhances the shielding by increase aromaticity in SWNTs to have stronger diamagnetic ring currents. Encapsulated fullerenes in SWNTs show unique dynamics which is related to 1-D geometry. They are found to undergo dynamics transition from free rotation to hindered rotation at ∼100 K, which is lower than that in 3-D bulk fullerenes by as much as ∼160 K. This huge reduction results from the decrease of Van der Waals interaction and the Coulomb interaction between an electron-rich bond and an electron-poor center of a pentagon or a hexagon. DWNTs were made by high temperature annealing of enriched peapods. The isotropic chemical shift of inner nanotubes was found to have shifted diamagnetically by 26.62 ppm due to the magnetic shielding by outer nanotubes. 75% of the inner nanotubes were proven to be metallic due to a strong interaction between inner and outer nanotubes.

Indexing (details)

Materials science
0794: Materials science
Identifier / keyword
Applied sciences; Dynamics of fullerenes inside nanotubes; Fullerenes; Local magnetic properties of SWNTs; NMR; Nanotubes; Peapods
Nuclear magnetic resonance studies of local magnetic, electronic, and dynamic properties in filled single wall carbon nanotubes
Kim, Younghyun
Number of pages
Publication year
Degree date
School code
DAI-B 68/11, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Luzzi, David E.
University of Pennsylvania
University location
United States -- Pennsylvania
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.