Abstract/Details

Role of association colloids in bulk oils on lipid oxidation


2007 2007

Other formats: Order a copy

Abstract (summary)

Lipid oxidation leads to quality deterioration of foods high in unsaturated fatty acids. Edible oils contain surface active compounds and water that can form physical structures known as association colloids. To better understand the influence of physical structures on the oxidative stability of bulk oils the role of association colloids on lipid oxidation was investigated. The effectiveness of chain-breaking antioxidants at retarding lipid oxidation depends on their chemical properties and physical location within a food. The first study showed that the surface activity and/or polarity of lipid-soluble antioxidant were not the only determinant of their effectiveness in food lipids. In the second study of model association colloids in oils, we found that the size of the reverse micelles increased with increased water or phosphatidylcholine concentration, but decreased upon addition of cumene hydroperoxide or oleic acid. Iron catalyzed oxidation of methyl linolenate in the reverse micelle system decreased with increasing water concentration. Phosphatidylcholine decreased methyl linolenate oxidation compared to control and reverse micelles with added oleic acid. These results indicate that water, cumene hydroperoxide, oleic acid, and phosphatidylcholine can alter reverse micelle size and lipid oxidation rates. The influence of these compounds on physical structures of bulk oil was also confirmed in a study using surface active fluorescence probe. The fluorescence intensity of 5-dodecanoylaminofluorescein (DAF) increased with increasing water concentration in the edible oil. Addition of oleic acid decreased DAF fluorescence due to the ability of the free fatty acid to decrease the pH of the aqueous phase of the bulk oil. Phosphatidylcholine increased DAF fluorescence due to its ability to increase DAF exposure to the aqueous phase. Oleic acid had no impact in the interactions between DAF and water soluble peroxyl radicals while phosphatidylcholine decreased peroxyl radical degradation of DAF. This research established the significance of physical structures of bulk oils on lipid oxidation. Understanding how the physical properties of bulk oils impact lipid oxidation could lead to development of novel antioxidant technologies that help improve the oxidative stability of oils containing increased concentrations of polyunsaturated fatty acids.

Indexing (details)


Subject
Food science
Classification
0359: Food science
Identifier / keyword
Biological sciences, Antioxidants, Association colloids, Bulk oils, Interfacial, Lipid oxidation, Lipids, Oxidation
Title
Role of association colloids in bulk oils on lipid oxidation
Author
Chaiyasit, Wilailuk
Number of pages
184
Publication year
2007
Degree date
2007
School code
0118
Source
DAI-B 68/11, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9780549330172
Advisor
Decker, Eric A.
Committee member
Atallah, Mokhtar T.; McClements, David J.
University/institution
University of Massachusetts Amherst
Department
Food Science
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3289208
ProQuest document ID
304838873
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304838873
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.