Abstract/Details

Patterns of community change of archaeal and bacterial populations colonizing extreme environments at Kilauea Volcano, Hawaii


2007 2007

Other formats: Order a copy

Abstract (summary)

Volcanic activity creates new landforms that can change dramatically as a consequence of biotic succession, and microbes are essential contributors to successional development. Our objective was to expand our knowledge of the spatial and temporal dynamics of microbial communities in nascent soils. To study primary succession we characterized the microbial diversity on a chronosequence of volcanic deposits ranging from 20 to 300 yr located in the Kilauea Volcano, Hawaii by analysis of Bacteria and Archaea 16S rRNA gene sequences amplified from total DNA, Community-Level Phospholipids Fatty Acid, Community-Level Physiological Profiles using ECOplate, and bacterial isolates. A parallel investigation of the extent of secondary succession was made on a nearby geothermally active site. Primary succession. phylogeny of 16S rRNA gene sequences indicated a high diversity of sequences not related to known taxa with 15 classes within the Bacteria domain and a high relative abundance within the Archaea domain of various unclassified non-thermophilic Crenarchaeota. Bacterial richness and diversity increased significantly with age, while no correlation was found among the archaeal community. The 194 isolates, together encompassing only 1.6% of total culture independent diversity, were not among the dominant clones in the libraries. Carbon utilization profiles and plate counts indicated that heterotrophic communities that are established on older sites were more active and occurred in higher numbers. Multivariate analyses showed not only that the bacterial communities of distinct sites and ecosystem regime shared similar phylotypes, but also revealed a gradual succession of the community structure. Secondary succession. elevated soil temperature (up to 87°C), and steam vents provide evidence of an active geothermal system. Bacterial clones and thermophilic Crenarchaeota were limited to the geothermal system, and not detected in the surrounding area. This not only indicates that the temperature shift resulted in a change of the community structure of these volcanic deposits, but also that the underlying strata might be the source for hyperthermophiles. In general, microbes are able to colonize and establish a community among recent volcanic deposits. However, environmental parameters rather than site age influence this successional development. This work yields new insights into survival and succession of microbes in soils.

Indexing (details)


Subject
Microbiology
Classification
0410: Microbiology
Identifier / keyword
Biological sciences, Extreme environments, Hawaii, Kilauea Volcano, Microbial communities
Title
Patterns of community change of archaeal and bacterial populations colonizing extreme environments at Kilauea Volcano, Hawaii
Author
Gomez-Alvarez, Vicente
Number of pages
215
Publication year
2007
Degree date
2007
School code
0118
Source
DAI-B 68/07, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9780549170518
Advisor
Nusslein, Klaus
University/institution
University of Massachusetts Amherst
Department
Microbiology
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3275743
ProQuest document ID
304839371
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304839371
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.