Abstract/Details

Aspects of environmental degradation and fracture in polymer films and fibers


2007 2007

Other formats: Order a copy

Abstract (summary)

This thesis is focused in three areas: An investigation of a thermodynamic criterion for failure by environmental stress cracking using observations of the wetting behavior of stress-cracking liquids on glassy polymer substrates; Determination of the dominant chemical and physical degradation mechanisms associated with exposure of poly-p-phenylenebisbenzoxazole fiber to moisture moisture and UV-Vis spectrum light; And finally, the effect of constraint on fracture at a bi-material interface is investigated using a model epoxy-metallic adherend specimen.

The wetting behavior of an ESC liquid on polycarbonate substrates has been evaluated as a function of substrate stress using a variation of Contact Adhesion Testing, a novel method of measuring small contact angles by refraction and conventional goniometry. The inelastic and elastic strain condition and time to the onset of crazing were also observed. A normalization of the time to onset of crazing using stress state, solubility difference and diffusion coefficients was shown to collapse the kinetic observations.

A comprehensive study of the degradation mechanisms of PBO AS fiber exposed in a controlled manner to challenging chemical environments, moisture and UV-Visible spectrum light was undertaken. Fibers were characterized using a broad range of mechanical and physical tests including tensile testing, Elemental Analysis, scanning electron microscopy, small angle X-ray diffraction, wide angle X-ray diffraction and attenuated total reflectance infrared spectroscopy. Degradation by moisture is found to be primarily due to a loosening of the fiber's fibrillar structure. Degradation by UV-Visible spectrum light is found to be chemical in nature involving hydrolytic disruption of the oxazole ring and possible subsequent conversion to an amide bond.

Approaches to alleviation of PBO AS fiber degradation were studied including super-critical carbon dioxide extraction of residual acid, the use of UV-Vis blocking coatings, compaction of the fiber microstructure and PBO AS/Siloxane composites prepared in super-critical carbon dioxide.

Finally, the effect of constraint on fracture at the interface between a polymer and adherend having orders of magnitude larger stiffness was studied using a model epoxy/metallic adherend system. Fracture energy was measured using an Elastic Wedge Opened Double Cantilevered Beam test and the process zone imaged using photoelastic methods.

Indexing (details)


Subject
Polymers;
Materials science;
Plastics
Classification
0495: Polymers
0794: Materials science
0795: Plastics
Identifier / keyword
Applied sciences, Pure sciences, Degradation mechanisms, Environmental degradation of PBO fiber, Environmental stress cracking, Fracture in constrained geometries, Polymers
Title
Aspects of environmental degradation and fracture in polymer films and fibers
Author
Walsh, Peter J.
Number of pages
217
Publication year
2007
Degree date
2007
School code
0118
Source
DAI-B 68/11, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9780549330325
Advisor
Lesser, Alan J.
Committee member
Donovan, James A.; Farris, Richard J.
University/institution
University of Massachusetts Amherst
Department
Polymer Science & Engineering
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3289223
ProQuest document ID
304845446
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304845446
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.