Bioenergetics of aging skeletal muscle

2007 2007

Other formats: Order a copy

Abstract (summary)

Phosphorous magnetic resonance spectroscopy was used to study the bioenergetics of skeletal muscle, with specific focus on the effects of senescence. In study 1 I found that the capacity for oxidative phosphorylation was unimpaired with old age. Furthermore, glycolytic flux was higher in young men, while older men relied more on oxidative phosphorylation. In addition to demonstrating unimpaired mitochondrial function with age, the results from this study raised the question of whether older adults exhibit impaired glycolytic capacity or an ability to adequately meet the energetic demands without using anaerobic glycolysis to its full potential. In studies 2 and 3, I investigated these possibilities by studying bioenergetics during free-flow (FF) and ischemic (ISC) contractions in young and older subjects.

In study 2 12 younger subjects performed FF and ISC ankle dorsiflexion with measures of muscle energetics using 31P-MRS. The overall aim of this study was to investigate the effects of ischemia on fatigue and ATP synthesis. Although fatigue was more pronounced ISC than FF, ATP supply and demand were matched under both conditions. The balance between ATP supply and demand was maintained, not through increased reliance on anaerobic glycolysis, but through increased metabolic economy and decreased rates of ATP hydrolysis. Secondary to the main findings of this study, I also provide evidence in support of a glycolytic contribution to phosphocreatine recovery in the absence of muscle contraction: a finding that conflicts with the common dogma that phosphocreatine recovery is an entirely oxidative process.

The aim of study 3 was to apply the same protocol used in study 2 to investigate the metabolic adaptability of young and older skeletal muscle under conditions where oxidative phosphorylation is negligible. As expected, glycolytic flux was lower in old compared to young during FF, however, glycolytic flux in older adults increased to a level similar to the young during ISC, suggesting that the capacity for anaerobic glycolysis in vivo remains intact in aged muscle. Furthermore, the results point to an age-related increase in metabolic economy as a mechanism that may allow older muscle to engage in maximal work with lower glycolytic flux compared to young.

Indexing (details)

Sports medicine
0487: Biochemistry
0575: Sports medicine
Identifier / keyword
Health and environmental sciences; Pure sciences; Aging; Bioenergetics; Skeletal muscle
Bioenergetics of aging skeletal muscle
Lanza, Ian R.
Number of pages
Publication year
Degree date
School code
DAI-B 68/03, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Kent-Braun, Jane A.
University of Massachusetts Amherst
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.