Abstract/Details

Molecular and genetic characterization of the <i>Drosophila morgue</i> gene


2007 2007

Other formats: Order a copy

Abstract (summary)

The Drosophila morgue gene was identified as a regulator of programmed cell death and encodes a novel ubiquitination (Ub) protein. Morgue protein contains a distinct combination of functional domains including: a zinc finger, F box, and variant Ub E2 conjugase domain. This unique combination suggests that Morgue may influence protein ubiquitination and targeting to the 26S proteasome for degradation. Morgue has been shown to promote turnover of a conserved anti-apoptotic protein, DIAP1. In the first part of this study, I present a published paper that describes the isolation and initial analysis of morgue.

In the second part of this thesis, I present a published review that discusses different models for Morgue function and describes the identification of a morgue orthologue in mosquito, Anopheles gambiae. This study compares the architecture of the two Morgue proteins, as the F box and conjugase domain within the two proteins are located in similar positions, and the F box and conjugase domains of AgMorgue exhibit 54% and 66% amino acid sequence identity to Morgue. Interestingly, the glycine substitution for the active site cysteine in AgMorgue is conserved. A zinc finger motif located at the NH2-terminus was also identified in both Morgue proteins.

In the third part of this study, I performed additional P-element excision screens to generate specific loss-of-function morgue alleles. Several viable alleles were obtained; however, the mutants appeared weak and were shown to exhibit decreased locomotor capabilities in adult climbing assays. Analysis of mutant embryos using a number of cell-type specific markers revealed partially penetrant disruptions in the number, position, and morphology of specific neurons and glia in both the central and peripheral nervous system.

Lastly, I describe strong genetic interactions between morgue mutants and mutations in the effete gene, which encodes a conserved Ub E2 conjugase that also influences DIAP1 levels and programmed cell death. Thus, in contrast to either morgue or effete mutants alone, animals homozygous for mutations in both these genes exhibit major disruptions in life cycle progression as they arrest in the third instar larval stage. These mutant larvae come to exhibit several morphological and anatomical abnormalities.

Indexing (details)


Subject
Genetics
Classification
0369: Genetics
Identifier / keyword
Biological sciences; Apoptosis; Ubiquitination; morgue
Title
Molecular and genetic characterization of the <i>Drosophila morgue</i> gene
Author
Schreader, Barbara A.
Number of pages
151
Publication year
2007
Degree date
2007
School code
0118
Source
DAI-B 68/02, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Advisor
Nambu, John R.
University/institution
University of Massachusetts Amherst
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3254950
ProQuest document ID
304846533
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304846533
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.