Abstract/Details

Polymer nanorods: Preparation, analysis, and chemical modification


2007 2007

Other formats: Order a copy

Abstract (summary)

The overall objectives of the projects which constitute this Ph.D. thesis are a preparation of two-component polymer nanorods using anodic alumina membranes as templates and an investigation of their structures as well as a possibility for a preparation of composite nanorods.

Anodic alumina membranes with various pore size prepared by the anodization of aluminum in electrochemical cell are used as well as commercial membrane (Chapter 2). Diblock copolymer nanorods are prepared using these membranes and their microphase-separated structures inside the membrane pores are investigated (Chapter 3 and 4). Semicrystalline polymer nanorods are prepared using these membranes and their composites are prepared by polymerizing second monomer inside these nanorods (polymer/polymer composite nanorods) or depositing metal clusters inside these nanorods (polymer/metal composite nanorods) (Chapter 5).

Microphase-separated structures of diblock copolymers inside the cylindrical membrane pores are affected by the relationship between the size of pores and the repeat period of the block copolymers (commensurability). Polystyrene- b-polybutadiene (PS-b-PBD) confined inside the membrane pores show novel structures that cannot be accessed by any other method, caused by the commensurability and large curvature of the templates. The interaction between each block of diblock copolymer and the alumina surface is another factor for the micro-phase separated structures of diblock copolymers inside alumina membrane pores. Surface modification of alumina membrane pores using octyltrimethoxysilane (OTMS) inverted the multi-barrel structure of symmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) and asymmetric PS-b-PMMA at large D/L 0, by changing the polarity of the templates. Asymmetric PS- b-PMMA at small D/L0 does not show this inversion.

Poly(4-methyl-1-pentene) (PMP) nanorods are prepared using commercial alumina membranes. PMP/polynorbornene nanorods are prepared by polymerizing norbornene inside PMP nanorods using liquid CO2 as reaction medium. This also provides a way to observe the structures of these semicrystalline polymer nanorods. PMP/Pt nanorods are prepared by introducing Pt precursors, dimethyl(cyclooctadiene)platinum(II) (CODPtMe2), clusters using supercritical CO2 as a medium and reducing it with H2 to form Pt clusters inside PMP nanorods.

Indexing (details)


Subject
Polymers;
Materials science
Classification
0495: Polymers
0794: Materials science
Identifier / keyword
Applied sciences, Pure sciences, Anodic alumina, Diblock copolymers, Nanorods
Title
Polymer nanorods: Preparation, analysis, and chemical modification
Author
Kim, Taehyung
Number of pages
134
Publication year
2007
Degree date
2007
School code
0118
Source
DAI-B 68/02, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Advisor
McCarthy, Thomas J.
University/institution
University of Massachusetts Amherst
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3254958
ProQuest document ID
304846939
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304846939
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.