Abstract/Details

Individual chemoreceptors of Salmonella typhimurium direct its accumulation in heterogeneous tumor tissue in vitro


2007 2007

Other formats: Order a copy

Abstract (summary)

The effectiveness of most chemotherapeutics is limited by their inability to penetrate deep into tumor tissue and their ineffectiveness against quiescent cells located far from tumor vasculature. Motile Salmonella typhimurium could overcome these therapeutics barriers. We hypothesize that the accumulation of S. typhimurium in tumors is controlled by two mechanisms: (1) chemotaxis towards compounds produced by quiescent cancer cells and (2) preferential growth within tumor tissue. We also hypothesized that individual chemoreceptors target S. typhimurium to specific tumor microenvironments. Using the tumor cylindroid model, which mimics the microenvironment of in vivo tumors, we elucidated the mechanism by which S. typhimurium is attracted to and accumlates in heterogeneous tumor tissue. Time-lapse fluorescent microscopy was used to quantify the accumulation of wild-type and chemotaxis machinery knockouts, including strains lacking individual cell-surface chemoreceptors, chemotaxis signal transduction pathway enzymes, and the flagella and motor assemblies. To measure the extent of apoptosis induced by individual bacterial strains, caspase-3 activity was measured as a function of time. Spatio-temporal profiles of wild-type bacteria were fit to a mathematical model to calculate two parameters that describe bacterial interaction with tumors: bacterial growth, M, and bacterial chemoattraction, K. It was observed that wild-type S. typhimurium are attracted to cylindroids and accumulate at long time points in the central region of large cylindroids. Both bacterial growth and bacterial chemotaxis were significantly greater in large cylindroids, suggesting that quiescent cells secrete bacterial chemoattractants.

Results also showed how individual chemoreceptors directed bacterial chemotaxis within cylindroids: the aspartate receptor initiated chemotaxis towards cylindroids, the serine receptor initiated penetration, and the ribose/galactose receptor directed S. typhimurium towards necrosis. In addition, strains lacking proper flagella constructs, signal transduction proteins, or active motor function, did not chemotax towards tumor cylindroids, indicating that attraction to specific compounds and not random motility is necessary to promote accumulation in tumors. By deleting the ribose/galactose receptor, bacterial accumulation localized to tumor quiescence and had a greater individual effect on inducing apoptosis than wild-type. This new understanding of the mechanisms of Salmonella migration in tumors will allow for the development of therapies with improved targeting to therapeutically inaccessible regions of tumors.

Indexing (details)


Subject
Chemical engineering
Classification
0542: Chemical engineering
Identifier / keyword
Applied sciences, Chemoreceptors, Chemotaxis, Salmonella enterica serovar Typhimurium, Tumor tissue
Title
Individual chemoreceptors of Salmonella typhimurium direct its accumulation in heterogeneous tumor tissue in vitro
Author
Kasinskas, Rachel W.
Number of pages
177
Publication year
2007
Degree date
2007
School code
0118
Source
DAI-B 68/07, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9780549171386
Advisor
Forbes, Neil S.
University/institution
University of Massachusetts Amherst
Department
Chemical Engineering
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3275764
ProQuest document ID
304847063
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304847063
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.