Abstract/Details

Synthesis of gold nanoparticles for biomacromolecular recognition


2007 2007

Other formats: Order a copy

Abstract (summary)

Gold nanoparticles have been widely known for many centuries. Until the 1990’s, gold nanoparticles were able to be synthesized in aqueous solutions with little functionalization of the nanoparticle due to the synthetic procedures that existed. In 1994 a synthetic technique was developed by Brust-Schiffrin which provided for the production of gold nanoparticles that could be easily obtained. Murray further developed this synthesis to provide for nanoparticles with many different functional groups and with various sizes. These nanoparticles synthesized through this method would afford for systems that would be capable of providing for biomacromolecular surface recognition; where the characteristics needed for surface recognition include the need for a large complementary surface with multiple recognition units for specificity.

Using the Brust-Schiffrin and Murry techniques we synthesized a gold nanoparticle which was functionalized with mercaptoundecanoic acid. This nanoparticle provided a water soluble nanoparticle which was easily synthesized and had pH solubility dependence. This nanoparticle was used effectively to bind α-chymotrypsin.

The mercaptoundecanoic acid functionalized nanoparticle when bound to the enzyme afforded a denatured chymotrypsin which was released by the addition of a surfactant with some activity towards the substrate, succinyl-Phe-Ala- p-nitroanilide. It was found that this released enzyme had new specificity towards other substrates with limited or no activity on substrates with larger peptide side chains. The released enzyme was observed to have the most activity towards the substrate, benzoyl-Tyr-p-nitroanilide.

A gold nanoparticle was synthesized that was functionalized by 2-(10-mercapto-decyl)-malonic acid. This provided for a nanoparticle that bound α-chymotrypsin and effectively inhibited the enzyme with little denaturation of the enzyme. The electrostatic nature of this complexation was probed by observing the effect of NaCl concentration upon the binding of the nanoparticle to the enzyme. Higher salt concentrations were observed to completely disrupt the binding, thus affording no inhibition of the enzyme’s activity. The nanoparticle-enzyme preformed complex was observed to be completely disrupted upon the addition of high salt concentrations. The released enzyme was observed to have 90% of the activity of native chymotrypsin.

Indexing (details)


Subject
Organic chemistry
Classification
0490: Organic chemistry
Identifier / keyword
Pure sciences, Biomacromolecular recognition, Cymotrypsin, Gold nanoparticles
Title
Synthesis of gold nanoparticles for biomacromolecular recognition
Author
Simard, Joseph M.
Number of pages
102
Publication year
2007
Degree date
2007
School code
0118
Source
DAI-B 68/07, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9780549175582
Advisor
Rotello, Vincent M.
University/institution
University of Massachusetts Amherst
Department
Chemistry
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3275799
ProQuest document ID
304847209
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304847209
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.