Abstract/Details

Intercellular signaling pathways in the initiation of mammalian forebrain development


2007 2007

Other formats: Order a copy

Abstract (summary)

The Spemann organizer in amphibians gives rise to the anterior mesendoderm (AME) and is capable of inducing neural tissues. This inductive activity is thought to occur largely via the antagonism of Bone Morphogenetic Protein (BMP) signaling in the organizer. In the mouse, BMP antagonists Chordin and Noggin function redundantly in the AME and are required during forebrain maintenance. However, the timing of forebrain initiation and the function of BMP antagonism in forebrain initiation remained unclear prior to this study. In addition, the Transforming Growth Factor β (TGFβ) ligand Nodal patterns the forebrain via its function in the anterior primitive streak (APS), the precursor tissue of the AME. Whether BMP and Nodal signaling pathways interact has not been previously investigated.

The goal of this dissertation was to investigate the cellular and molecular mechanisms involved in early mammalian forebrain establishment by embryonic and genetic manipulations. This study determined that forebrain initiation occurs during early gastrulation and requires signals from the AVE and AME. The AVE was identified as a source of active BMP antagonism in vivo, and the BMP antagonism supplied by exogenous tissues was capable to promote forebrain initiation and maintenance in the murine ectoderm. It is likely that BMP antagonism enhances forebrain gene expression via inhibiting posteriorization. This study further identified a possible crosstalk between BMP and Nodal signaling. Loss of Chordin or Noggin in combination with heterozygosity for Nodal or Smad3 results in holoprosencephaly. Molecular analyses suggest that the BMP-Nodal interaction occurs in the APS and/or the AME. Failure of this interaction results in an imbalance of BMP and Nodal signal levels that devastate APS and AME patterning during early forebrain establishment, ultimately leading to holoprosencephaly in mid-gestation. This interaction is likely to occur extracellularly, possibly by formation of a BMP-Nodal heteromeric complex. Furthermore, the spatiotemporal expression of phospho-Smad1/5/8, an effector of BMP signaling pathway, was characterized during early mouse embryogenesis. Distribution of phospho-Smad1/5/8 serves as a faithful readout of BMP signaling activity and helps to better understand how BMPs are involved in patterning early embryos. The implication of phospho-Smad1/5/8 expression in both wildtype and mutant embryos is also discussed.

Indexing (details)


Subject
Genetics;
Cellular biology
Classification
0369: Genetics
0379: Cellular biology
Identifier / keyword
Biological sciences; Anterior mesendoderm; Chordin; Forebrain; Intercellular signaling; Noggin; Spemann organizer
Title
Intercellular signaling pathways in the initiation of mammalian forebrain development
Author
Yang, Yu-Ping
Number of pages
203
Publication year
2007
Degree date
2007
School code
0066
Source
DAI-B 68/02, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Advisor
Klingensmith, John
University/institution
Duke University
University location
United States -- North Carolina
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3252428
ProQuest document ID
304870406
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304870406
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.