Abstract/Details

Composite fabrication and polymer modification using neoteric solvents


2009 2009

Other formats: Order a copy

Abstract (summary)

This thesis is divided into two research initiatives: The fabrication and study of bulk, co-continuous, cellulosic-polymer composites with the aid of supercritical CO2 (SC CO2); and the study of poly(vinyl alcohol) (PVOH) modification and surface activity in ionic liquids.

The first part of this thesis utilizes the tunable solubility, gas-like diffusivity, and omniphilic wettability of SC CO2 to incorporate and subsequently polymerize silicone and poly(enemer) prepolymer mixtures throughout various cellulosic substrates. Chapters two and three investigate the mechanical properties of these composites and demonstrate that nearly every resulting composite demonstrates an improved flexural modulus and energy release rate upon splitting. Fire resistance of these composites was also investigated and indicates that the heat release rate, total heat released, and char yield were significantly improved upon for all silicone composites compared to the untreated cellulosic material. Chapter four looks specifically at aspen-silicone composites for thermo-oxidative studies under applied loads in order to study the effect of silicone incorporation on the failure kinetics of aspen. The aspen-silicone composites tested under these conditions demonstrated significantly longer lifetimes under the same loading and heating conditions compared with untreated aspen.

The second part of this thesis focuses on studying ionic liquids as potentially useful solvents and reaction media for poly(vinyl alcohol). Two ionic liquids (1-Butyl-3-methylimidizolium chloride and tributylethylphosphonium diethylphosphate) were found to readily dissolve PVOH. More importantly, we have demonstrated that these solvents can be used as inert reaction media for PVOH modification. Both ionic liquids were found to facilitate the quantitative esterification of PVOH, while only the phosphonium ionic liquid supports the quantitative urethanation of the polymer. In an attempt to tune the surface properties of ionic liquid/polymer solutions, PVOH was also partially esterified with low surface energy substituents. Both surface tension and surface composition of the ionic liquid/polymer solutions can be manipulated by the stoichiometric addition of low surface energy acid chlorides. This work on the modification of PVOH can be directly applied to the modification of polysaccharides such as cellulose which could have important implications from a sustainability and energy standpoint.

Indexing (details)


Subject
Polymer chemistry;
Materials science
Classification
0495: Polymer chemistry
0794: Materials science
Identifier / keyword
Applied sciences, Pure sciences, Carbon dioxide, Cellulose, Flammability, Ionic liquids, Neoteric solvents, Poly(vinyl alcohol), Polymer modification, Silicone
Title
Composite fabrication and polymer modification using neoteric solvents
Author
Eastman, Scott A.
Number of pages
158
Publication year
2009
Degree date
2009
School code
0118
Source
DAI-B 70/12, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9781109500257
Advisor
McCarthy, Thomas J.; Lesser, Alan J.
Committee member
Dinsmore, Anthony D.
University/institution
University of Massachusetts Amherst
Department
Polymer Science & Engineering
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3379955
ProQuest document ID
304924243
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304924243
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.