Abstract/Details

Nanoparticle functionalization and grafting-from chemistry for controlling surface properties and nanocomposite behavior


2009 2009

Other formats: Order a copy

Abstract (summary)

Nanoparticles were functionalized in order to incorporate their unique properties into functional materials. Gold nanoparticles were functionalized to direct their assembly at the oil-water interface, and further modified to achieve cross-linking at the interface, incorporation of charged groups or targeting groups, and extrusion to resize the capsules for potential delivery applications. Capsules were characterized by fluorescence microscopy by encapsulation of a fluorescent dye, and after drying on substrates by scanning force microscopy (SFM) and transmission electron microscopy (TEM). Gold nanoparticles were functionalized for their assembly into a microphase separated block copolymer, polystyrene-b-poly(2-vinyl pyridine) (PS-PVP) and the nanoparticles were directed within the domains by modification of the ligand periphery. Varying the ratio of hydrophobic to hydrophilic ligands allowed for the controlled assembly of the nanoparticles within the PVP domain of the diblock copolymer or at the interface between the two blocks. Thermal annealing resulted in ripening of the particles and migration of all particles to the center of the PVP domain. Location of the nanoparticles was determined by TEM and SFM. Gold nanoparticles were modified with acid-labile groups for potential use in photolithography applications, and with amine groups for incorporation in water purification membranes. Silica particles were modified with a dithiocarbonate chain transfer agent to achieve controlled polymerization by reversible addition fragmentation chain transfer polymerization (RAFT) of vinyl acetate from the particle surface. The poly(vinyl acetate) was hydrolyzed to poly(vinyl alcohol) to achieve particles dispersible in water with potential gas barrier properties. Functionalized silica particles were characterized by thermogravimetric analysis, TEM, and polymer was characterized by size exclusion chromatography.

Indexing (details)


Subject
Polymer chemistry
Classification
0495: Polymer chemistry
Identifier / keyword
Pure sciences; Assembly; Gold nanoparticles; Grafting-from; Nanocomposites; Nanoparticles; Polyvinyl pyridine
Title
Nanoparticle functionalization and grafting-from chemistry for controlling surface properties and nanocomposite behavior
Author
Glogowski, Elizabeth M.
Number of pages
151
Publication year
2009
Degree date
2009
School code
0118
Source
DAI-B 70/03, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9781109059076
Advisor
Emrick, Todd S.
Committee member
Carter, Kenneth; Dinsmore, Anthony D.
University/institution
University of Massachusetts Amherst
Department
Polymer Science & Engineering
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3349701
ProQuest document ID
304924411
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304924411
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.