Abstract/Details

Improved chemical vapor generation methods for the determination of cadmium, lead and mercury in biological and environmental materials by flow injection atomic spectrometry


2005 2005

Other formats: Order a copy

Abstract (summary)

New methods for the determination of cadmium and lead by flow injection chemical vapor generation atomic absorption spectrometry with tetrahydroborate immobilized on an anion-exchanger were developed. Both flow injection and hydride generation parameters were optimized. The method has less suppression by some coexisting elements than the generation by the reaction with tetrahydroborate in aqueous solution, and smaller amounts of reagents are required. The developed method was successfully applied for the determination of trace amounts of cadmium and lead in environmental and biological materials.

A method for the determination of trace concentrations of cadmium, by electrothermal atomic absorption spectrometry with flow injection chemical vapor generation from a terahydroborate-form anion-exchanger with in-atomizer trapping on a Zr-Ir coated graphite tube atomizer, was developed. Both electrothermal atomization and flow injection hydride generation parameters were optimized. A detection limit of 2 ppt was obtained. The method was successfully applied to the analyses of various types of environmental and biological samples.

The cold vapor generation of mercury from tin chloro anion complexes immobilized on an anion exchanger was successfully developed for the first time. A purer tin(II) chloride reagent was obtained by passing solution through the anion-exchange column. The method was applied to the determination of trace amounts of total and inorganic mercury in different types of sample matrices with satisfactory results.

A procedure for the speciation of mercury from the immobilized tetrachlorotin(II)- and tetrahydroborate-form anion-exchange columns was developed. Better tolerance of some coexisting elements was found compared to that of conventional cold vapor generation techniques. The method was applied for the speciation of mercury in canned fish and seafood samples and in some standard reference materials.

A mercury speciation procedure for environmental and biological samples based on in-atomizer trapping on a gold-coated graphite tube atomizer and electrothermal atomic absorption spectrometry was developed. Both types of immobilized reducing agent gave satisfactory results.

A new method for preconcentration of trace inorganic mercury in water samples as the anionic-chloro complex on anion-exchanger with reductive elution with tetrahydroborate solution was developed. The detection limit was 0.8 ppt. The method was applied to the analysis of natural water, spring water, drinking water, tap water and seawater samples.

Cadmium and lead were determined in Typha angustifolia and Lemna minor in support of phytoremediation studies. Typha angustifolia is a suitable plant for the phytoremediation of lead contaminated soil. The interaction of cadmium and lead on the phytoextraction by Typha angustifolia in contaminated soil was investigated. The methods developed required only a small sample size from Lemna minor plants, so that multiple samples from the same plant could be taken.

Indexing (details)


Subject
Analytical chemistry
Classification
0486: Analytical chemistry
Identifier / keyword
Pure sciences; Biological materials; Cadmium; Chemical vapor generation; Environmental materials; Flow-injection atomic spectrometry; Lead; Mercury
Title
Improved chemical vapor generation methods for the determination of cadmium, lead and mercury in biological and environmental materials by flow injection atomic spectrometry
Author
Chuachuad, Wipharat
Number of pages
345
Publication year
2005
Degree date
2005
School code
0118
Source
DAI-B 66/10, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9780542382628, 0542382628
Advisor
Tyson, Julian F.
University/institution
University of Massachusetts Amherst
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3193890
ProQuest document ID
304993761
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/304993761
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.