Materials assembly using molecular recognition and redox -modulated recognition

2005 2005

Other formats: Order a copy

Abstract (summary)

The integration of non-covalent interactions in materials provides a direct mechanism to customize materials properties to specific applications and create novel nanostructures. Combining self-assembly with non-covalent interactions serves as a powerful tool in the creation of complex macromolecular structures with thermodynamically reversible contacts. With a host of non-covalent interactions available (e.g. dative bonding, hydrogen bonding, electrostatic pairings, π-stacking), tailoring the size and stability of self-assembled materials can be achieved through choice of interaction. This thesis describes two distinctive areas of research employing a rational combination of self-assembly and non-covalent interactions: (1) the synthesis and self-assembly of recognition unit functionalized Polyhedral Oligomeric Silsesquioxane (POSS) units and (2) the study of redox-modulated, molecular recognition in macromolecular systems.

POSS units have long been employed as covalent additives in both polymeric and ceramic-based systems. Now, they have found alternative uses as non-covalent modifiers in multiple supramolecular systems. POSS units inherently feature a variety of attributes, which make them attractive as molecular recognition elements. These three-dimensional, nanoscale "building blocks" (∼0.6 nm inner silicate core) can easily be functionalized with a variety of recognition units. Through synthetic modification we were able to create a versatile component for non-covalent self-assembly with defined spacial orientations. To that end, recognition unit functionalized POSS units have been shown to serve as potent non-covalent modifiers for applications including surface modification, nanoparticle self-assembly, thermal enhancement in polymeric systems, and potential cellular delivery systems.

Modulating non-covalent interactions via the reduction or oxidation of a molecule serves as an effective means in tuning the formation of supramolecular assemblies. Initial solution-based studies of both non-specific (urea-quinone) and specific, three-point (flavin-diamidopyridine) hydrogen bonding systems have been successful in understanding the complex behaviors, which govern redox-modulated molecular recognition. This understanding led to the incorporation of electrochemically tunable "host-guest" interactions on polymers and surfaces. Several interesting behaviors ranging from reversible redox-modulated recognition to induced proton transfer processes were observed and the ongoing focus of this research seeks to combine materials applications and redox-modulated recognition to create responsive, electrochemically tunable polymers and surfaces.

Indexing (details)

Organic chemistry;
Materials science
0490: Organic chemistry
0794: Materials science
Identifier / keyword
Applied sciences; Pure sciences; Flavin; Materials assembly; Molecular recognition; Redox-modulated recognition; Silsesquioxane
Materials assembly using molecular recognition and redox -modulated recognition
Carroll, Joseph B.
Number of pages
Publication year
Degree date
School code
DAI-B 66/10, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
0542382601, 9780542382604
Rotello, Vincent M.
University of Massachusetts Amherst
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.