Copper metallization in supercritical carbon dioxide: Applications and kinetics

2005 2005

Other formats: Order a copy

Abstract (summary)

Copper is the material of choice for advanced interconnects due to its low electrical resistance and superior electromigration resistance. However, as feature sizes are reduced in successive generations, the difficulty of filling high aspect ratio feature increases rapidly. Supercritical Fluid Deposition (SFD) is a promising hybrid technique for single step conformal metal deposition that is extendable to sub-45 nm device structures. The approach involves the reduction of organometallic compounds in supercritical media to yield high purity conformal films. High precursor concentration and low viscosity in supercritical fluids prevent mass transport limitations and promote excellent step coverage of very narrow features. The absence of surface tension in the supercritical fluids enables the complete wetting of complex surfaces. Moreover, since the effluent of the SFD often contains only CO2, hydrocarbons, and H2, this technique offers considerable environmental advantages.

In this work, a recirculating equilibrium system is presented for measuring organometallic compounds solubilities in supercritical carbon dioxide. Solubility of nickelocene, bis(2,2,6,6-tetramethyl-3,5-heptanedionate)copper, [Cu(tmhd) 2], and bis(2,2,7-trimethyloctane-3,5-dionato)copper, [Cu(tmod) 2], were obtained at different temperatures and pressures. The solubility results confirm high precursor concentrations, a distinct advantage in SFD process over vapor phase metallization techniques.

Furthermore, the versatility and effectiveness of the SFD process is demonstrated by employing novel precursors for Cu deposition. Different type of reaction chemistries were tested and compared to demonstrate the SFD process for Cu metallization.

Moreover, a revolutionary interfacial adhesion promotion method was developed and tested for Cu metallization. A thin poly(acrylic acid) layer (3.5 nm) was found to dramatically enhance the interfacial adhesion of Cu films to substrates with various barrier layers, including TaN, TiN and Ta.

While the utility of SFD for Cu metallization has been well demonstrated, the kinetic pathways and the mechanism of the process have not previously been studied in detail. In this dissertation, the first kinetic study of Cu metallization by hydrogen reduction of Cu(tmod)2 in supercritical carbon dioxide is reported. Film deposition rates in the temperature range of 220°C to 270°C, as a function of the relevant experimental parameters including precursor and H2 concentration, by-product concentration, and system pressure, were investigated. The implication of these results for mechanistic pathways for Cu deposition in CO2 is discussed. A rate expression for film growth rate in terms of system control parameters is proposed.

Indexing (details)

Chemical engineering
0542: Chemical engineering
Identifier / keyword
Applied sciences; Copper; Metallization; Supercritical carbon dioxide
Copper metallization in supercritical carbon dioxide: Applications and kinetics
Zong, Yinfeng
Number of pages
Publication year
Degree date
School code
DAI-B 66/02, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
9780496977109, 0496977105
Watkins, James J.
University of Massachusetts Amherst
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.