Characterization of humic substances and non-ideal phenanthrene sorption as affected by clay -humic interactions

2005 2005

Other formats: Order a copy

Abstract (summary)

Humic substances (HS) are major components of soil organic matter (SOM). Advances on characterization of HS and their interaction with minerals can provide a more fundamental understanding of HS functions in soils. The objectives of this research were to investigate potential fractionation of humic acid (HA) upon adsorption on minerals and to determine any variation on structure and sorption properties of humin extracted by different methods. Nuclear magnetic resonance (NMR) spectra, for the first time, provided direct evidence that HA was fractionated during adsorption on mineral surfaces. Aliphatic fractions of HA were preferentially adsorbed while aromatic fractions were more likely to be left in solution. The bound HA fractions had higher sorption linearity (N) and affinity (KOC) for phenanthrene than the source HA. For montmorillonite and kaolinite, the KOC values of adsorbed HA were up to several times higher than that of the source HA as a result of fractionation. Extraction procedures had substantial influences in structure and sorption characteristics of humin. Humin from 0.1 M NaOH exhaustive extraction and 6 M HF/HCl extraction at 60°C had relatively more aliphatic components as compared with 1 M HF extracted humin. The treatment of 6 M HF/HCl at 60°C reduced more than 50% carbohydrate components (50-108 ppm) and enriched amorphous poly(methylene) domains. The NaOH exhaustively extracted humin had the most nonlinear sorption isotherms and the HF extracted humin had the lowest KOC. We concluded that both NaOH and NaOH-HF procedures were appropriate approaches for humin extraction but the extraction with 6 M HF/HCl at 60 °C would be discouraged for use due to structural modifications of humin both chemically and physically. Segmental mobility of HA in solution was also explored by NMR relaxation. Proton spin-lattice relaxation time (T1) of HAs ranged from 0.3 to 0.8 s in d6-DMSO, and from 0.26 to 2.3 s in 0.5 M NaOD at 300 MHz. Proton correlation time of HA in solvents was in an order of 10-10 s. Carbohydrate was identified as the largest and the most immobile components while aliphatic and aromatic fragments were relatively smaller and more mobile in aqueous solution.

Indexing (details)

Soil sciences;
Environmental science;
0481: Soil sciences
0768: Environmental science
0996: Geochemistry
Identifier / keyword
Health and environmental sciences; Earth sciences; Biological sciences; Clay-humic; Humic; Phenanthrene; Sorption
Characterization of humic substances and non-ideal phenanthrene sorption as affected by clay -humic interactions
Wang, Kaijun
Number of pages
Publication year
Degree date
School code
DAI-B 66/11, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
9780542383755, 0542383756
Xing, Baoshan
University of Massachusetts Amherst
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.