Scale effects of shallow foundation bearing capacity on granular material

2005 2005

Other formats: Order a copy

Abstract (summary)

This project investigated the scale effects of shallow foundation bearing capacity on granular materials to evaluate the observed decreasing trend of the bearing capacity factor, Nγ, with increasing footing width, B, for a given sand at a given density. Model and prototype scale square and circular footing tests ranging in size from 25.4 mm to 914.4 mm, were performed on two compacted sands at three relative densities. Results of model scale footing tests indicate that the bearing capacity factor, Nγ , is dependent on the absolute width of the footing for both square and circular footings.

Direct shear box tests were performed in three different size shear boxes. Results of the direct shear tests indicate that there is a substantial scale effect; i.e., as the box size increases the friction angle, &phis;, decreases. The results of the direct shear box tests also show that the Mohr-Coulomb strength envelope is non-linear. The curvature shows higher strengths at low normal stresses and lower strengths at high normal stresses. High strengths at low confining stresses found in the direct shear box can help to explain the scale effect seen in small footings.

Both the footing tests and direct shear tests were modeled using a lower and higher order Finite Element model. New Nγ values versus friction angle were generated using Drucker-Prager (1952) plane strain conditions. The values match the results of the footing tests from this study extremely well, while all other previously published solutions overpredict Nγ at high friction angles. The higher order model utilized the parameter, internal length, which has been shown to be a function of panicle shape, degree of interlocking and binder stiffness. The internal length parameter accurately predicted the direct shear, model and prototype footing test results.

Although the scale effect of shallow foundation bearing capacity on granular materials still cannot be quantified, it can be predicted with the addition of the internal length parameter and the understanding that particle interlocking at low stresses significantly influences the results of the strength of a small scale footing and of a shear test.

Indexing (details)

Civil engineering
0543: Civil engineering
Identifier / keyword
Applied sciences; Foundation; Granular material; Shallow foundations
Scale effects of shallow foundation bearing capacity on granular material
Cerato, Amy B.
Number of pages
Publication year
Degree date
School code
DAI-B 66/02, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
049697629X, 9780496976294
Lutenegger, Alan J.
University of Massachusetts Amherst
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.