Surface chemistry of poly(<i>p</i>-xylylene) and nylon

2005 2005

Other formats: Order a copy

Abstract (summary)

The interaction of a material with its surroundings occurs at the material-environment interface, therefore, the chemical and physical characteristics of the material's surface plays a fundamental role in determining its properties, such as its biocompatibility, adhesion, and wettability, and ultimately, its technological applicability. This dissertation discusses aspects of the chemical surface modification of two polymers, poly(p-xylylene) and nylon.

Chapter 2 focuses on the synthesis and wet-chemistry surface modification of poly(p-xylylene) (PPX) thin films. A series of electrophilic aromatic substitutions were studied including chlorosulfonation, chloroamidomethylation, and Friedel-Crafts catalyzed reactions. It was found that the yields and surface selectivity of the reactions studied were highly dependent on the interaction of the polymer with the reaction medium.

Chapter 3 describes the use of vapor deposition polymerization in template-assisted synthesis. Poly(p-xylylene) nanotubes were synthesized by template assisted methods using porous aluminum oxide membranes as the templating material. The pore diameter showed a linear dependence with respect to the deposition time. FESEM analysis showed that PPX was deposited along the pores of the membranes. Exposure of the membranes to a reactive solution resulted in chemical functionalization of the inner walls of the nanotubes, confirmed by XPS.

Chapter 4 discusses the chemical reduction of nylon film surfaces by reaction with a borane-tetrahydrofuran complex. It was observed that, while the reaction occurs in high yields, its surface-confinement is highly dependent on the segmental mobility of the polymer. The amine-rich surfaces were further used as templates for the synthesis of composite films by electrostatic adsorption of polyanions.

Chapter 5 deals with the synthesis of linear polyalkyleneimines of different hydrocarbon lengths by the surface-mediated reduction of nylons. These polyalkyleneimines were further used as compatibilizers for the melt intercalation of montmorillonite clays, modified and unmodified, with polypropylene. The polyamines were found to interact favorably with the clays, leading to intercalated and exfoliated systems. The determining factor in controlling the degree of dispersion of the clays, was the enthalpic interaction between the clay and the compatibilizer.

Indexing (details)

Materials science;
0794: Materials science
0495: Polymers
Identifier / keyword
Applied sciences; Pure sciences; Nylon; Poly(p-xylylene); Surface chemistry
Surface chemistry of poly(<i>p</i>-xylylene) and nylon
Herrera-Alonso, Margarita
Number of pages
Publication year
Degree date
School code
DAI-B 66/02, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
9780496976607, 0496976605
McCarthy, Thomas J.
University of Massachusetts Amherst
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.