Abstract/Details

Propagating and mitigating uncertainty in the design of complex multidisciplinary systems


2005 2005

Other formats: Order a copy

Abstract (summary)

As humanity has developed increasingly ingenious and complicated systems, it has not been able to accurately predict the performance, development time, reliability, or cost of such systems. This inability to accurately predict parameters of interest in the design of complex multidisciplinary systems such as automobiles, aircraft, or spacecraft is due in great part to uncertainty. Uncertainty in complex multidisciplinary system design is currently mitigated through the use of heuristic margins. The use of these heuristic margins can result in a system being overdesigned during development or failing during operation.

This thesis proposes a formal method to propagate and mitigate uncertainty in the design of complex multidisciplinary systems. Specifically, applying the proposed method produces a rigorous foundation for determining design margins. The method comprises five distinct steps: identifying tradable parameters; generating analysis models; classifying and addressing uncertainties; quantifying interaction uncertainty; and determining margins, analyzing the design, and trading parameters. The five steps of the proposed method are defined in detail. Margins are now a function of risk tolerance and are measured relative to mean expected system performance, not variations in design parameters measured relative to heuristic values.

As an example, the proposed method is applied to the preliminary design of a spacecraft attitude determination and control system. In particular, the design of the attitude control system on the Mars Exploration Rover spacecraft cruise stage is used. Use of the proposed method for the example presented yields significant differences between the calculated design margins and the values assumed by the Mars Exploration Rover project.

In addition to providing a formal and rigorous method for determining design margins, this thesis provides three other principal contributions. The first is an uncertainty taxonomy for use in the design of complex multidisciplinary systems with detailed definitions for each uncertainty type. The second is the modification of two simulation techniques, the mean value method and subset simulation, that can significantly reduce the computational burden in applying the proposed method. The third is a set of diverse application examples and various simulation techniques that demonstrate the generality and benefit of the proposed method.

Indexing (details)


Subject
Aerospace materials;
Mechanical engineering
Classification
0538: Aerospace materials
0548: Mechanical engineering
Identifier / keyword
Applied sciences; Attitude control; Spacecraft; Uncertainty
Title
Propagating and mitigating uncertainty in the design of complex multidisciplinary systems
Author
Thunnissen, Daniel P.
Number of pages
237
Publication year
2005
Degree date
2005
School code
0037
Source
DAI-B 66/01, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9780496950164, 0496950169
Advisor
Culick, Fred
University/institution
California Institute of Technology
University location
United States -- California
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3161556
ProQuest document ID
305004161
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/305004161
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.