Neural modeling of binaural interaction in the mammalian brainstem: Role of intrinsic factors on the MSO and LSO

2005 2005

Other formats: Order a copy

Abstract (summary)

In the mammalian auditory system, perception of the azimuthal location of a sound is associated with disparities in the timing and level of a sound reaching the two ears: the interaural time difference (ITD) and the interaural level difference (ILD). ITD and ILD information are first encoded in the brainstem nuclei, the medial superior olive (MSO) and the lateral superior olive (LSO), respectively. In the past, it has been assumed that ITD and ILD sensitivity in the brainstem nuclei result from timing and level differences in activities of bilateral afferent inputs. However, several experimental observations suggest that cellular factors may also contribute to encoding ITDs and ILDs in the MSO and LSO. These observations include (1) the rate-ITD sensitivity of an MSO cell depends on sound level (Goldberg and Brown, 1969), which is likely related to level-dependent inhibition; (2) Synaptic inhibition can alter best ITDs in the MSO (Brand et al., 2002); (3) LSO cells show distinct chopper discharge patterns in response to tone-burst stimuli (Tsuchitani and Johnson, 1985), which is likely related to specific membrane properties.

In this thesis, a single-neuron modeling approach is used to provide quantitative explanations for these three observations. Simulations of the level dependence of the ITD sensitivity in the MSO indicate that inhibition adjusts the net excitation input level and allows a cell to maintain a robust ITD-tuning to sound level. Simulations of the shift of the best ITD by inhibition show that the interplay between depolarizing sodium currents and hyperpolarizing inhibitory currents affects the ITD-tuning of an MSO cell. Simulations of the chopper discharge pattern in the LSO indicate that LSO cells are heterogeneous in their membrane properties, and that this heterogeneity leads to differences in their rate-ILD responses and in their sensitivities to envelope-modulated stimuli. Together, the model results lead to the conclusion that ITD and ILD-dependent responses in the MSO and LSO are influenced by their synaptic and membrane properties, which may allow dynamic tuning of the auditory system in natural acoustic environments. Further, model results make testable predictions, which upon experimental testing will enrich our understanding of the neural basis of sound localization.

Indexing (details)

Biomedical research;
0541: Biomedical research
0317: Neurology
Identifier / keyword
Applied sciences; Biological sciences; Binaural; Brainstem; Lateral superior olive; Medial superior olive
Neural modeling of binaural interaction in the mammalian brainstem: Role of intrinsic factors on the MSO and LSO
Zhou, Yi
Number of pages
Publication year
Degree date
School code
DAI-B 66/04, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
9780542080425, 0542080427
Colburn, H. Steven
Boston University
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.