Reduced complexity detection methods for continuous phase modulation

2005 2005

Other formats: Order a copy

Abstract (summary)

Continuous phase modulation (CPM) is often plagued by high receiver complexity. One successful method of dealing with this is the well-known pulse amplitude modulation (PAM) representation of CPM, which was first proposed by Laurent. It is shown that the PAM representation also applies to multi-h CPM and ternary CPM, two previously unconsidered cases. In both cases it is shown that many PAM components may be required to exactly represent the signal. This is especially true of partial-response systems where the memory of the signal is long. Therefore, approximations are proposed which require only a limited number of terms.

These extensions of the PAM representation are used to construct reduced-complexity detectors for CPM. These are generalizations of the detector first proposed by Kaleh. These detectors can be used in an optimal configuration, or in a suboptimal reduced-complexity configuration. The PAM complexity-reduction principle is shown explicitly. An exact expression is given for the pairwise error probability for the entire class of PAM-based CPM detectors, not just the extended cases proposed herein. The analysis is performed for the additive white Gaussian noise (AWGN) channel. The performance bound that results from this pairwise error probability is shown to be tighter than a previously published bound for PAM-based CPM detectors. The analysis shows that PAM-based detectors are a special case of the broad class of mismatched CPM detectors. However, it is shown that the metrics for PAM-based detectors accumulate distance in a different manner than metrics for other mismatched and suboptimal detectors. These distance properties are especially useful in applications with greatly reduced trellis sizes.

The proposed detectors are included in two case studies. The first is for a multi-h CPM standard used in aeronautical telemetry. Many reduced-complexity detectors are studied in addition to PAM-based detectors. The second case study is for a ternary CPM known as shaped offset QPSK (SOQPSK). Here, the performance of serially concatenated coded SOQPSK is studied along with uncoded systems. It is shown that the coded systems achieve large gains over uncoded systems. However, the design proposed herein achieves these gains with less complexity than previously published designs.

Indexing (details)

Electrical engineering
0544: Electrical engineering
Identifier / keyword
Applied sciences; Complexity; Continuous phase modulation; Detection; Pulse-amplitude modulation
Reduced complexity detection methods for continuous phase modulation
Perrins, Erik Samuel
Number of pages
Publication year
Degree date
School code
DAI-B 66/06, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
9780542196171, 0542196174
Rice, Michael
Brigham Young University
University location
United States -- Utah
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.