Molecular regulation of the HERG potassium channel

2004 2004

Other formats: Order a copy

Abstract (summary)

The dynamic regulation of membrane excitability determines the human heart rhythm and governs cardiac adaptation to changes in physiologic demands. Human Ether-a-go-go Related Gene (HERG) encodes the pore-forming K+ selective channel subunit that carries the rapidly activating delayed rectifier current (Ikr). Ikr is unique in its ability to respond to and modify the rate of membrane repolarization at the end of each action potential, making it essential to the maintenance of the cardiac rhythm. HERG K+ channel has been linked to both hereditary and acquired forms of the Long QT syndrome (LQT), a potentially fatal cardiac disorder with a characteristic polymorphic ventricular tachyarrhythmia. Given the critical role of this channel in controlling the cardiac rhythm, we studied mechanisms of molecular and cellular regulation of HERG and proposed a role for these mechanisms in both normal activity and the LQT Syndrome.

To examine the role of cellular proteins in the regulation of HERG K + channel function, we sought to identify additional proteins that interact with and modify channel activity. In a yeast-two-hybrid screen of a human heart library, we identified an interaction between HERG and 14-3-3 proteins providing a novel mechanism linking β-adrenergic signaling and HERG K+ channel function. Association of HERG and 14-3-3 required protein kinase A (PKA) dependent phosphorylation of the channel on both the N- and C-termini. 14-3-3 binding stabilized the lifetime of the PKA-phosphorylated state of the channel by shielding HERG from phosphatases. 14-3-3 overexpression enhanced HERG current by accelerating activation and shifting the voltage dependence of channel activation to more hyperpolarized potentials. The functional effects of 14-3-3 on HERG current required dimerization of 14-3-3 and potential cross-bridging of the cytoplasmic termini of the channel. We confirmed an association of HERG and 14-3-3 in porcine myocardium, supporting a role for 14-3-3 in regulating endogenous HERG/Ikr. Overall, binding of 14-3-3 to HERG prolonged the effects of cAMP stimulation upon channel activity. These results describe a novel molecular mechanism by which adrenergic signaling alters HERG channel activity and provide initial evidence that a macromolecular complex couples intracellular signals with membrane excitability by dynamically regulating HERG.

Indexing (details)

Molecular biology;
Cellular biology
0307: Molecular biology
0379: Cellular biology
Identifier / keyword
Biological sciences; Fourteen-3-3; HERG; Long QT syndrome; Potassium channel
Molecular regulation of the HERG potassium channel
Kagan, Anna
Number of pages
Publication year
Degree date
School code
DAI-B 65/09, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
McDonald, Thomas V.
Yeshiva University
University location
United States -- New York
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.