The construction of palladium and palladium-alloy supported membranes for hydrogen separation using supercritical fluid deposition

2004 2004

Other formats: Order a copy

Abstract (summary)

The separation of hydrogen from other light gases is of particular importance to the chemical process industry. Membrane based processes offer a cost effective alternative to traditional processing while allowing the combination of separation and reaction in a single unit. Dense palladium or palladium alloy films are a natural choice for hydrogen separation due to their potential infinite selectivity for hydrogen.

In this dissertation we investigated the construction of palladium-based supported hydrogen separation membranes using Supercritical Fluid Deposition (SFD). Compared to other deposition methods, SFD offers an effective metal deposition approach for porous materials due to its high precursor solubility, rapid mass transfer, and lack of surface tension. Three palladium precursors were evaluated for membrane construction in terms of thermal stability, reactivity and surface selectivity. Pd-X (X = Ag, Ni, or Cu) co-depositions were studied to determine the potential of SFD for direct alloy deposition.

Intrinsic to effective membrane construction is the control of membrane location and thickness. Several different reactor and reactants geometries were utilized to control membrane location. An opposed reactants geometry was used to produce sub-surface membranes at controlled depths (80–600 μm) in porous α-alumina. A same-sided reactants geometry was used to produce surface films ranging in thickness from 100 nm to 5 μm on numerous support materials. Membranes were characterized using a variety of techniques including: SEM, XPS, XRD, EPMA, and gas permeation.

Indexing (details)

Chemical engineering;
Materials science
0542: Chemical engineering
0794: Materials science
Identifier / keyword
Applied sciences; Hydrogen separation; Membranes; Palladium; Supercritical fluid
The construction of palladium and palladium-alloy supported membranes for hydrogen separation using supercritical fluid deposition
Fisher, Scott M.
Number of pages
Publication year
Degree date
School code
DAI-B 65/01, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Watkins, James J.
University of Massachusetts Amherst
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.