Abstract/Details

Conventional and photonic crystal fiber based two -photon fluorescence biosensing


2004 2004

Other formats: Order a copy

Abstract (summary)

Optical fiber probes are widely used in the biomedical field for applications such as optical microscopy, endoscopy, and optical biopsy. Due to their flexibility and small size, optical fibers offer a minimally invasive light interface for imaging and spectroscopic analysis of internal tissue. The development of fluorescent probes for studies of biological processes has increased the importance of developing optical methods for quantitative, in vivo diagnosis.

In this dissertation, we discuss the development of a novel two-photon optical fiber fluorescence (TPOFF) probe for real time, in vivo, quantitative fluorescence measurements in biological samples. In order to understand and optimize two-photon excitation through an optical fiber, pulse propagation effects must be considered. We found a simple phenomenological scaling behavior for the energy dependence of the pulse width for negatively pre-chirped pulses propagating in a normally dispersive fiber. As a consequence of this scaling behavior, the dependence of two-photon fluorescence (TPF) on the pulse intensity becomes sub-quadratic.

The TPOFF probe employs a scheme where the same single-mode fiber (SMF) is used for both the excitation and collection of TPF. Using this fiber probe, we show quantification of tumor fluorescence both ex vivo and in vivo. In ex vivo measurements of tumors developed from cells expressing the green fluorescence protein (GFP), the TPOFF probe detected fluorescence from tumors with as little as 0.3% GFP cells. These results were similar to flow cytometry analysis of isolated cells from the tumors. The TPOFF measurements of GFP tumors in live, anesthetized mice showed a linear relationship between the measured fluorescence and the percentage of GFP expressing cells. The TPOFF probe was also used in targeted binding experiments of Herceptin antibody and folic acid-dendrimer nanoparticle conjugates.

To improve the sensitivity of the TPOFF probe, a double-clad photonic crystal fiber (DCF) was employed. This fiber combines the advantages of both single mode fibers (high excitation efficiencies) and multimode fibers (high collection efficiencies). When we compare the through-fiber TPF signal from a Rhodamine dye gel collected by an SMF and DCF, we observe over an order of magnitude signal enhancement.

Indexing (details)


Subject
Optics
Classification
0752: Optics
Identifier / keyword
Pure sciences; Biosensing; Fiber-optic probes; Multiphoton fluorescence; Photonic crystal; Two-photon fluorescence
Title
Conventional and photonic crystal fiber based two -photon fluorescence biosensing
Author
Myaing, Mon Thiri
Number of pages
102
Publication year
2004
Degree date
2004
School code
0127
Source
DAI-B 65/10, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
9780496096152, 049609615X
Advisor
Norris, Theodore B.
University/institution
University of Michigan
University location
United States -- Michigan
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3150053
ProQuest document ID
305183396
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/305183396
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.