Functional analysis of Hic-5/ARA55 isoforms in C2C12 myogenesis

2006 2006

Other formats: Order a copy

Abstract (summary)

Hic-5 is a focal adhesion protein of paxillin superfamily that was initially cloned from mouse osteoblasts as a TGF-β or H2O2 inducible cDNA. As well, Hic-5 was independently identified as an Androgen receptor activator (ARA55). Conflicting data have implicated Hic-5 in opposing processes. With two Hic-5 isoforms documented, I hypothesized that multiple Hic-5 isoforms may exist that have both overlapping and isoform-specific functions, which may explain those discrepancies. To test this hypothesis, I have utilized C2C12 myoblasts and analyzed the roles of Hic-5 isoforms in development and homeostasis.

1. I have confirmed the presence of the two previous reported Hic-5 isoforms (α and β) and uncovered 10 additional novel Hic-5 transcripts. Conceptually translated proteins from these transcripts significantly differ at the N-terminal region and likely have distinct binding properties and functions. Hic-5 isoforms have distinct tissue distribution and are developmentally regulated in the mouse mammary gland in vivo (Chapter two).

2. I found that: (a) myoblasts express multiple Hic-5 isoforms; (b) the two predominant isoforms, Hic-5α and Hic-5β, are differentially expressed during myogenesis; (c) any experimentally-induced change in Hic-5 expression results in a substantial increase in apoptosis during differentiation; (d) ectopic expression of Hic-5α is permissive to differentiation while expression of either Hic-5β or antisense Hic-5 reduces myoblast chemo-differentiation and blocks fusion; (e) Hic-5 localizes to focal adhesion in C2C12 myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (f) perturbations of Hic-5 expression interfere with the normal expression dynamics of laminin; and (g) the rescue of myoblast survival and differentiation by laminin but not fibronectin suggests that Hic-5 isoforms differentially regulate myogenesis due to their different impacts on cell-ECM interaction, focal adhesion dynamics and integrin signaling (Chapter Three).

In summary, the roles Hic-5 may assume in development and homeostasis are complex and the different Hic-5 isoforms may mediate distinct physiological and/or pathological responses in cells. Therefore, a more precise analysis of Hic-5 isoforms is required to more fully understand the roles of not only Hic-5, but also integrin signaling in normal and diseased cells ( Chapter four and five).

Indexing (details)

Cellular biology
0379: Cellular biology
Identifier / keyword
Biological sciences; ARA55; Hic-5/ARA55; Isoforms; Myogenesis
Functional analysis of Hic-5/ARA55 isoforms in C2C12 myogenesis
Gao, Zhengliang
Number of pages
Publication year
Degree date
School code
DAI-B 67/11, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Schwartz, Lawrence M.
University of Massachusetts Amherst
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.