The role of intracellular oxygenation in age-related differences in skeletal muscle fatigue

2006 2006

Other formats: Order a copy

Abstract (summary)

The studies included in this dissertation address the role of blood flow and cellular oxygenation in skeletal muscle fatigue, with an underlying interest in age-related differences in muscle fatigue. In the first study, I found that blood flow immediately post-contraction was tightly coupled to contraction intensity throughout an incremental isometric dorsiflexor contraction protocol in healthy young men. This relationship was independent of fatigue, and the onset of fatigue occurred before any reduction or plateau in blood flow. These data suggest that fatigue during intermittent incremental contractions does not result from a blood flow limitation. The second study used magnetic resonance spectroscopy of deoxymyoglobin to examine the role of intracellular oxygenation in muscle fatigue during slow and rapid incremental contractions in healthy young men and women. Data from this study showed that the rate of deoxygenation relative to force during contractions was predictive of fatigue, and this was true for slow and rapid contractions. Further, intracellular oxygenation was lower, and fatigue greater, during more metabolically demanding rapid contractions. These data support a role for intracellular oxygenation in the development of fatigue. The final study investigated whether differences in intracellular oxygenation could explain age-related differences in muscle fatigue. During slow contractions, intracellular oxygenation was higher, but fatigue lower, in older compared to young subjects. After matching a subset of subjects by muscle strength, age-group differences in oxygenation were eliminated, but fatigue was still less in older subjects, suggesting that while differences in oxygenation exist between young and older subjects, they cannot explain the age-group differences in fatigue. This conclusion was supported by a similar oxygenation, but greater fatigue, in young compared to older subjects during rapid contractions. Based on these findings, intracellular oxygenation does not appear to play a role in the age-related differences in fatigue observed in this and other studies. Together, data from this dissertation suggest that intracellular oxygenation plays a role in the development of muscle fatigue, despite the ability of blood flow to match contraction intensity. Differences in oxygenation, however, cannot explain age-related differences in muscle fatigue.

Indexing (details)

Sports medicine;
Anatomy & physiology
0575: Sports medicine
0719: Anatomy & physiology
Identifier / keyword
Health and environmental sciences; Biological sciences; Age-related; Intracellular; Muscle fatigue; Oxygenation; Skeletal muscle
The role of intracellular oxygenation in age-related differences in skeletal muscle fatigue
Wigmore, Danielle M.
Number of pages
Publication year
Degree date
School code
DAI-B 67/11, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Kent-Braun, Jane
University of Massachusetts Amherst
University location
United States -- Massachusetts
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.