Abstract/Details

Cyclooxygenase and cyclic AMP -dependent protein kinase regulate actin organization and cell motility


2003 2003

Other formats: Order a copy

Abstract (summary)

Cell adhesion to an extracellular matrix plays a critical role in many aspects of normal cell function. Cells display various modes of interaction with the extracellular matrix; they may attach and spread, become immobilized, or become motile. These cellular responses are regulated by intracellular signals, which modify the organization of the cytoskeleton. One common characteristic of malignantly transformed cells is alteration in one or more aspects of adhesion. Most notably, cancer cells often display enhanced motility and there is a positive correlation between cell mobility and metastatic potential in situ. HeLa cells, a cell line derived from a cervical carcinoma, were used as a model system for this investigation. It has been shown, in HeLa cells, that cell attachment to a gelatin-coated substrate results in the release of arachidonic acid, which is metabolized by lipoxygenase. A subsequent cascade of lipid second messengers activates protein kinase C, which triggers actin polymerization leading to cell spreading. This work employed inhibitor studies, and biochemical analysis to elucidate a parallel branch of arachidonic acid signaling that reorganizes the actin cytoskeleton into small bundles. This branch of the pathway is initiated by cyclooxygenase, which generates prostaglandins and causes the downstream activation of cyclic AMP-dependent protein kinase. The results suggest that arachidonic acid functions at a branch point in signaling to the cytoskeleton. The lipoxygenase branch provides polymerized actin; the actin filaments then act as a substrate for the cylooxygenase branch to generate actin bundles. These actin bundles were shown to associate with myosin and small adhesion complexes. Activation of cyclooxygenase signaling and the subsequent cytoskeletal organization were found to increase cell motility. Overexpression of the small GTPases rho and cdc42, also induces cell crawling, and these signaling molecules seem to interact with cyclooxygenase in directing organization of the cytoskeleton. In sum these results suggest that faulty regulation of arachidonic acid signaling can result in the pathological cell motility that characterizes the most aggressive cancers.

Indexing (details)


Subject
Cellular biology
Classification
0379: Cellular biology
Identifier / keyword
Biological sciences, Actin, Cell motility, Cyclooxygenase, cAMP-dependent protein kinase
Title
Cyclooxygenase and cyclic AMP -dependent protein kinase regulate actin organization and cell motility
Author
Glenn, Honor L.
Number of pages
101
Publication year
2003
Degree date
2003
School code
0118
Source
DAI-B 64/10, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Advisor
Jacobson, Bruce S.
University/institution
University of Massachusetts Amherst
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3110490
ProQuest document ID
305320882
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/305320882
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.