Abstract/Details

Comparative hindlimb anatomy and fossoriality of three armadillos: Dasypus novemcinctus, Tolypeutes matacus, and Chaetophractus vellerosus (Mammalia, Xenarthra, Cingulata, Dasypodidae)


2003 2003

Other formats: Order a copy

Abstract (summary)

Armadillos are fossorial mammals found primarily in South America. Extant genera vary in size, behavior, and habitat. Armadillos use their forelimbs to break the soil when digging; hindlimb use varies. Some use hindlimbs purely for bracing; others actively excavate with their hindlimbs. Use of the hindlimbs in excavation is related to burrow creation.

Three armadillo species were examined in the present study: Dasypus novemcinctus, Tolypeutes matacus, and Chaetophractus vellerosus. Dramatic differences were present in both the osteology and myology of the hindlimb. Identification of muscles was a non-trivial task. Among the difficulties was identification of divisions of the gluteus superficialis. This muscle traditionally is divided into the gluteus maximus and femorococcygeus. In armadillos the natural division appears to be tripartite.

The hindlimb of Tolypeutes is dramatically different from that of Dasypus. Chaetophractus has a more intermediate morphology, but generally resembles Dasypus. Many anatomical differences appear related to burrowing. Tolypeutes is the least fossorial, but most cursorial of extant armadillos. Both Dasypus and Chaetophractus are accomplished burrowers, and share several features which appear to be specializations for using the hindlimb to excavate soil.

The tibia and fibula are more robust in Dasypus than in Tolypeutes. A well developed flange, site of origin for the peronei, is present on the proximal fibula in Dasypus. The tibia-fibula of Chaetophractus is intermediate. The muscles of Dasypus, particularly the gluteals and hamstrings, are better developed than those of Chaetophractus, which in turn, has better developed muscles than Tolypeutes. Two muscles, the caudofemoralis and crurococcygeus, are present in Dasypus, but absent in the other two armadillos. The sartorius and tenuissimus are present in Chaetophractus and Dasypus, but absent in Tolypeutes. Intrinsic pedal musculature is better differentiated and developed in Dasypus and Chaetophractus.

Fossoriality has yet to be directly measured in armadillos. Behavioral descriptions have suggested Chaetophractus is more fossorial than Dasypus. Hindlimb anatomy suggests Dasypus is the better burrower. Extending the hindlimb analysis to a controversial fossil armadillo, †Peltephilus, suggests it was not a burrower.

Indexing (details)


Subject
Anatomy & physiology;
Zoology
Classification
0287: Anatomy & physiology
0472: Zoology
Identifier / keyword
Biological sciences, Armadillos, Chaetophractus vellerosus, Dasypus novemcinctus, Fossoriality, Hindlimb, Tolypeutes matacus
Title
Comparative hindlimb anatomy and fossoriality of three armadillos: Dasypus novemcinctus, Tolypeutes matacus, and Chaetophractus vellerosus (Mammalia, Xenarthra, Cingulata, Dasypodidae)
Author
Koneval, Timothy Owen
Number of pages
595
Publication year
2003
Degree date
2003
School code
0118
Source
DAI-B 64/10, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Advisor
Coombs, Margery Chalifoux
University/institution
University of Massachusetts Amherst
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertations & Theses
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3110512
ProQuest document ID
305322036
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
http://search.proquest.com/docview/305322036
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.