Investigations into the Cerberus outflow channels, Mars

2003 2003

Other formats: Order a copy

Abstract (summary)

Mars Orbiter Camera (MOC) images and Mars Orbiter Laser Altimeter (MOLA) data on the Mars Global Surveyor (MGS) spacecraft show evidence for three catastrophic outflow channels around the Cerberus Plains region, Mars. The morphologies seen in MOC images located within channels seen in gridded MOLA topography are similar to those found in catastrophic flood terrains on Earth, such as the Channeled Scabland. Thus, they indicate the channels’ formation by catastrophic flood flow. The morphologies and topography also counterindicate the channels’ formation by lava, glaciers or CO2-charged density flows.

Crater counting on lineated terrain, interpreted as diluvially eroded, gives model ages for the channels of extreme Upper Amazonian, ranging from 2–8 Ma for the youngest to 35–140 Ma for the oldest. The distinct age ranges, as well as the geographic/geologic relationships, indicate that the last flood flows down each of the channels were not contemporaneous. Two, and possibly all three, of the channels originate at the Cerberus Fossae volcano-tectonic fissures, although lack of erosion around the channels’ origin at the fissures suggests the fissures have been recently reactivated. Neither magmatic melting of ground ice nor gravity-driven groundwater flow can produce a volumetric discharge at a rate commensurate with that estimated from the surface topography.

Geomorphic evidence suggests floodwater ponded temporarily in Athabasca Vallis. Two paleoflood height indicators, which are separated by thirty-five kilometers along channel, have very similar heights. This may be explained by temporary ponding of floodwater behind a large crater in the channel, and consequent deposition of sediment in this slower flow. An additional factor contributing to the similar heights of the paleoflood indicators may be post-eruption subsidence near the origin of the channel, although this possibility, without the hypothesized ponding, cannot explain the preferential location of the streamlined forms up slope of the crater.

Indexing (details)

0372: Geology
0606: Astronomy
0606: Astrophysics
Identifier / keyword
Pure sciences; Earth sciences; Athabasca Vallis; Cerberus; Craters; Flood flows; Mars; Outflow channels; Volcano-tectonic fissures
Investigations into the Cerberus outflow channels, Mars
Burr, Devon Marjorie
Number of pages
Publication year
Degree date
School code
DAI-B 64/05, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Baker, Victor R.
The University of Arizona
University location
United States -- Arizona
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.