DNAgents: Genetically engineered intelligent mobile agents

2010 2010

Other formats: Order a copy

Abstract (summary)

Mobile agents are a useful paradigm for network coding providing many advantages and disadvantages. Unfortunately, widespread adoption of mobile agents has been hampered by the disadvantages, which could be said to outweigh the advantages. There is a variety of ongoing work to address these issues, and this is discussed. Ultimately, genetic algorithms are selected as the most interesting potential avenue. Genetic algorithms have many potential benefits for mobile agents. The primary benefit is the potential for agents to become even more adaptive to situational changes in the environment and/or emergent security risks. There are secondary benefits such as the natural obfuscation of functions inherent to genetic algorithms. Pitfalls also exist, namely the difficulty of defining a satisfactory fitness function and the variable execution time of mobile agents arising from the fact that it exists on a network. DNAgents 1.0, an original application of genetic algorithms to mobile agents is implemented and discussed, and serves to highlight these difficulties. Modifications of traditional genetic algorithms are also discussed. Ultimately, a combination of genetic algorithms and artificial life is considered to be the most appropriate approach to mobile agents. This allows the consideration of agents to be organisms, and the network to be their environment. Towards this end, a novel framework called DNAgents 2.0 is designed and implemented. This framework allows the continual evolution of agents in a network without having a separate training and deployment phase. Parameters for this new framework were defined and explored. Lastly, an experiment similar to DNAgents 1.0 is performed for comparative purposes against DNAgents 1.0 and to prove the viability of this new framework.

Indexing (details)

Artificial intelligence;
Computer science
0800: Artificial intelligence
0984: Computer science
Identifier / keyword
Applied sciences; Artificial life; Intelligent agents; Mobile agents
DNAgents: Genetically engineered intelligent mobile agents
Kackley, Jeremy Otho
Number of pages
Publication year
Degree date
School code
DAI-B 71/10, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Ali, Dia
The University of Southern Mississippi
University location
United States -- Mississippi
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.