Abstract/Details

DIGITAL SPEECH PROCESSING IN THE CONTEXT OF A HUMAN AUDITORY MODEL (SPEECH PROCESSING, AUDITORY MODEL)


1990

Other formats: Order a copy

Abstract (summary)

Digital speech processing in the context of a digital hearing model can improve the subjective quality of the speech processing algorithms. This subjective quality is a measure of how 'good' the processed speech sounds to the listener. Subjective quality can be measured by paired comparison tests where subjects are asked to choose between two stimuli the one that sounds the best. This dissertation proposes that if digital speech processing is performed on speech that has been preprocessed using a digital hearing model, the resulting speech, after undoing the preprocessing of the digital hearing model, will sound 'better' as measured by subjective quality evaluations, whether or not standard objective distortion measures indicate otherwise. This dissertation proposes a digital hearing model for application in digital speech processing. This hearing model approximates the perception of intensity. Two digital processing algorithms were used to validate the claims of this dissertation. The first was spectral subtraction and the second was subband vector quantization. The results obtained from the subjective quality evaluations demonstrated evidence in support of the hypothesis of this dissertation. There was a 90% preference for coding in the perceptual domain for magnitude compression of 58:1 through 176:1 and a preference above 70% for noise suppression of speech corrupted by additive Gaussian noise of 18 dB and lower signal-to-noise ratios.

Indexing (details)


Classification
ENGINEERING,: ELECTRONICS AND ELECTRICAL (0544)
Title
DIGITAL SPEECH PROCESSING IN THE CONTEXT OF A HUMAN AUDITORY MODEL (SPEECH PROCESSING, AUDITORY MODEL)
Author
Christiansen, Mark Wesley
Correspondence author
Christiansen, Mark Wesley 
Pages
113
Number of pages
113
Publication year
1990
Source type
Dissertations & Theses
Language
English
Document type
Dissertation
Dissertation/thesis number
9022872
Accession number
cs-1952
ProQuest document ID
85138475
Document URL
http://search.proquest.com/docview/85138475
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.