Robust nonparametric and semiparametric modeling

2009 2009

Other formats: Order a copy

Abstract (summary)

In this dissertation, several new statistical procedures in nonparametric and semiparametric models are proposed. The concerns of the research are efficiency, robustness and sparsity.

In Chapter 3, we propose complete composite quantile regression (CQR) procedures for estimating both the regression function and its derivatives in fully nonparametric regression models by using local smoothing techniques. The CQR estimator was recently proposed by Zou and Yuan (2008) for estimating the regression coefficients in the classical linear regression model. The asymptotic theory of the proposed estimator was established. We show that, compared with the classical local linear least squares estimator, the new method can significantly improve the estimation efficiency of the local linear least squares estimator for commonly used non-normal error distributions, and at the same time, the loss in efficiency is at most 8.01% in the worst case scenario.

In Chapter 4, we further consider semiparametric models. The complexity of semiparametric models poses new challenges to parametric inferences and model selection that frequently arise from real applications. We propose new robust inference procedures for the semiparametric varying-coefficient partially linear model. We first study a quantile regression estimate for the nonparametric varying-coefficient functions and the parametric regression coefficients. To improve efficiency, we further develop a composite quantile regression procedure for both parametric and nonparametric components. To achieve sparsity, we develop a variable selection procedure for this model to select significant variables. We study the sampling properties of the resulting quantile regression estimate and composite quantile regression estimate. With proper choices of penalty functions and regularization parameters, we show the proposed variable selection procedure possesses the oracle property in the terminology of Fan and Li (2001).

In Chapter 5, we propose a novel estimation procedure for varying coefficient models based on local ranks. By allowing the regression coefficients to change with certain covariates, the class of varying coefficient models offers a flexible semiparametric approach to modeling nonlinearity and interactions between covariates. Varying coefficient models are useful nonparametric regression models and have been well studied in the literature. However, the performance of existing procedures can be adversely influenced by outliers. The new procedure provides a highly efficient and robust alternative to the local linear least squares method and can be conveniently implemented using existing R software packages. We study the sample properties of the proposed procedure and establish the asymptotic normality of the resulting estimate. We also derive the asymptotic relative efficiency of the proposed local rank estimate to the local linear estimate for the varying coefficient model. The gain of the local rank regression estimate over the local linear regression estimate can be substantial. We further develop nonparametric inferences for the rank-based method. Monte Carlo simulations are conducted to access the finite sample performance of the proposed estimation procedure. The simulation results are promising and consistent with our theoretical findings.

All the proposed procedures are supported by intensive finite sample simulation studies and most are illustrated with real data examples.

Indexing (details)

0463: Statistics
Identifier / keyword
Pure sciences; Nonparametric smoothing; Quantile regression; Robust modeling; Semiparametric modeling
Robust nonparametric and semiparametric modeling
Kai, Bo
Number of pages
Publication year
Degree date
School code
DAI-B 73/01, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Li, Runze; Hunter, David R.
The Pennsylvania State University
University location
United States -- Pennsylvania
Source type
Dissertations & Theses
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
Access the complete full text

You can get the full text of this document if it is part of your institution's ProQuest subscription.

Try one of the following:

  • Connect to ProQuest through your library network and search for the document from there.
  • Request the document from your library.
  • Go to the ProQuest login page and enter a ProQuest or My Research username / password.