Abstract/Details

Synthesis and characterization of cationic contrast agents and imaging of articular cartilage using x-ray computed tomography and Magnetic Resonance

Freedman, Jonathan David.   Boston University ProQuest Dissertations Publishing,  2015. 3733818.

Abstract (summary)

Osteoarthritis (OA) is a painful, chronic, non-inflammatory disease affecting 140 million people worldwide that alters synovial joint structure and function. OA progressively breaks down hyaline cartilage, the hydrated tissue that provides a smooth, nearly frictionless surface and distributes loads applied to articulating joint surfaces. The loss of glycosaminoglycans (GAGs) from the extracellular matrix of cartilage is an early marker of OA. Therefore, imaging methods that quantify the GAG content of cartilage are of interest. This work investigates the synthesis and development of three cationic contrast agents (CAs) for imaging articular cartilage (AC): CA4+, an iodinated small molecule, and tantalum oxide nanoparticles (Ta2O5 NPs) for x-ray Computed Tomography (CT) imaging; and Gadopentetate-dilysine (Gd(DTPA)Lys2), a gadolinium small molecule for Magnetic Resonance (MR) imaging. These cationic contrast agents are attracted to the strong negative fixed charge of extracellular GAG and, therefore, infiltrate cartilage. This work begins with an overview of CT and MR imaging basic principles, current clinical CAs and contrast enhanced imaging of AC. First, the large-scale (50 g) synthesis of CA4+ is described and the partitioning over time of CA4+ into ex vivo AC is correlated to GAG content and cartilage mechanical properties. Similar partitioning studies are applied to anionic, neutral and cationic Ta2O 5 NPs, where the cationic NP exhibited substantially greater affinity for AC. Moreover, by maintaining the positive charge on the NP surface and introducing a polyethylene glycol coating, a NP formulation is described for successful in vivo cartilage imaging. Next described is the MRI CA, Gd(DTPA)Lys2, which affords an equivalent T1 signal in cartilage at 1/10th the effective dosage of anionic gadopentetate. Finally, the equilibrium partitioning of the small molecule CT and MRI CAs is directly compared to GAG content and mechanical properties in human finger AC.

In summary, results show cationic CAs strongly correlate to both GAG and mechanical properties and distribute in direct proportion to GAG unlike anionic CAs. The use of cationic CAs to quantify the biochemical and mechanical changes of AC may aid drug discovery and improve clinical assessment and intervention of OA for future patients.

Indexing (details)


Subject
Pharmacology;
Organic chemistry;
Biomedical engineering
Classification
0419: Pharmacology
0490: Organic chemistry
0541: Biomedical engineering
Identifier / keyword
Pure sciences; Applied sciences; Health and environmental sciences; Articular cartilage; Computed tomography; Contrast agents; Glycosaminoglycans; Magnetic resonance imaging
Title
Synthesis and characterization of cationic contrast agents and imaging of articular cartilage using x-ray computed tomography and Magnetic Resonance
Author
Freedman, Jonathan David
Number of pages
196
Degree date
2015
School code
0017
Source
DAI-B 77/03(E), Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
978-1-339-22205-9
Advisor
Grinstaff, Mark W.; Snyder, Brian D.
Committee member
Jara, Hernan J.; Singh, Anurag; Walsh, Carol T.
University/institution
Boston University
Department
Pharmacology and Experimental Therapeutics
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertation or Thesis
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
3733818
ProQuest document ID
1746929287
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
https://www.proquest.com/docview/1746929287