Content area
Full Text
Obesity and type 2 diabetes have been associated with a high-fat diet (HFD) and reduced mitochondrial mass and function. We hypothesized a HFD may affect expression of genes involved in mitochondrial function and biogenesis. To test this hypothesis, we fed 10 insulin-sensitive males an isoenergetic HFD for 3 days with muscle biopsies before and after intervention. Oligonucleotide microarray analysis revealed 297 genes were differentially regulated by the HFD (Bonferonni adjusted P < 0.001). Six genes involved in oxidative phosphorylation (OXPHOS) decreased. Four were members of mitochondrial complex I: NDUFB3, NDUFB5, NDUFS1, and NDUFV1; one was SDHB in complex II and a mitochondrial carrier protein SLC25A12. Peroxisome proliferator-activated receptor y coactivator-1 (PGC1) α and PGC1β mRNA were decreased by -20%, P < 0.01, and -25%, P < 0.01, respectively. In a separate experiment, we fed C57Bl/6J mice a HFD for 3 weeks and found that the same OXPHOS and PGC1 mRNAs were downregulated by ~90%, cytochrome C and PGC1α protein by ~40%. Combined, these results suggest a mechanism whereby HFD downregulates genes necessary for OXPHOS and mitochondrial biogenesis. These changes mimic those observed in diabetes and insulin resistance and, if sustained, may result in mitochondrial dysfunction in the prediabetic/insulin-resistant state. Diabetes 54:1926-1933, 2005
At the molecular and structural level, mitochondrial biogenesis and mitochondrial function are altered in diabetes, as well as in insulin-resistant relatives of type 2 diabetic subjects (1,2). At the ultra-structural level, a reduction in the number, location, and morphology of mitochondria is strongly associated with insulin resistance (1). Two recent microarray studies have shown that genes involved in oxidative phosphorylation (OXPHOS) exhibit reduced expression levels in the skeletal muscle of type 2 diabetic subjects and prediabetic subjects. These changes may be mediated by the peroxisome proliferator-activated receptor γ coactivator-1 (PGC1) pathway. PGC1α- and PGC1β-responsive OXPHOS genes show reduced expression in the muscle of patients with type 2 diabetes (3,4). In addition to the cellular energy sensor AMP kinase, the peroxisome proliferator-activated receptor cofactors PGC1α (5-7) and possibly PGC1β (8) activate mitochondrial biogenesis and increase OXPHOS gene expression by increasing the transcription, translation, and activation of the transcription factors necessary for mitochondrial DNA (mtDNA) replication. Similarly, PGC1α increases the transcription of enzymes necessary for substrate oxidation, electron transport, and ATP synthesis. Morphological and...